Basics of Aerodynamics
and Flight Mechanics

Fluid Dynamics
and the Sailplane

Inviscid Incompressible Flow
Physical properties of the atmosphere

The flow of air around a sailplane in flight & determined
by the laws of fluid mechanics. The state of the air is de-
fined bv a number of physical properdies such as pressurg,
density, temperature, compressibility, kinematic viscosity,
and relative humidity. Due to gravity, the properties of the
atmosphere vary wilh allitude. Pressure, density, and tem-
perature all decrease with altitude. Solar radiation and
topography also play a role, causing considerakble varia-
tion in the atmospheric properties. This offect is especially
pronounced al low altitudes.

Several slandard atmospheric madels are used 1o com-
pare aircraft data (2. sailplane performance measure-
ments) al different altiiudes, Table 1 and Fig. 1 summarize
some data of interast from the 19684 1CAD (Internationsl
Civil Aviation Organization) Standard Atmosphere [12], a
commonly usad standard that represents an atmospherg
free from metecrological influences. Other idealized mod-
els have been defined, including the 1962 US Standard At-
mosphere {identical to the 1964 |CAD model up to 65,000
ft, revized in 1976}, the 1959 ARDC {3, Air Force) at-
mosphere [17]. and MIL-STD-2104, which reflects the ex-
treme ambient lemperatures encountered in golar or tropi-
cal climates. The results presented in this book are based
an the 1964 ICAD madel [12],

It should be emphasized that these standard atmec-
spheric madels are idealizations based on empirical data

Table 1; ICAQ 1964 Standard Atmosphere [12]
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and/or simplified mathematical models. The pressure, p,
density, p. and absolute temperature T of an ideal gas are
related to one another through the ideal gas faw,

p=pAT : {1

where R is the specific gas constant for the gas or mixture
of gases. For example, an increase in pressure results in
an increase in density and/or air temperature.  The pro-
cass of thermal formation, familiar 1o all sailplane pilots, is
also governed by these physical laws. Solar radiation in-
creases the temperature near the ground, [eading to a local
reduction in air density. The affected parcel of air becomes
buayant and climbs skyward as a thermal.
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Often, the data in Table 1 ara presented in nondimen-
sional terms:

& =pipp  Pressure ratio i2)
o =y Density ratio {3
B =TT, Temperalurs ratio 4]

where pg, oo, and Ty are the sea level values of pres-
surie, density, and absolute termperature.  In nondimen-
sional units, the universal gas law (Eq. 1} becomeas simply:

§=ab (5)

Standard atmospheric models permit the pressure and
density to be expressed Indirectly as altitudes. Fressure

altitude, {hy) for example, is the altitude in the standard
model corresponding to the ambicnt pressure.  Density
altitude, hy is defined itia similar mannar. Note that while
hp, and hy are expressed as alttudes [m], they actually
serve to define a pressure [Pa] and density [kg/m?].

Basics of fluid mechanics

Equation 1 is the equation of state for ideal gases al rest,
The equations governing the fow about an aircraft are con-
siderably mare complicated. Air particles flowing past an
aircraft are accelerated, compressed, and sheared against
ane anather. Acceleration leads io inertial forces, com-
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Fig. 2: Flow field near an object in steady flow.
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pression to elastic forces, and shearing to viscous forces,
The relationship between these forces and the geometnc
form of the aircraft is defined by the Navier-Stokes equa-
fions, the fundamental equations of fluid mechanics. Given
the geometric shape of a body, for example an airfoil, the
Mavier-Stokes eguations may be used to calculate the ve-
locity and pressure distributions in the resulting flow.

The flow figld is defined by the local velocity (speed and
direction) and pressure at each point in the field  As will
be discussed. the pressure and velocity at a given point
are dirgctly related 1o one another. The local velocity s
the sum of the freestream velocity V.. (the velocity of the
undisturbed flow far upstream of the object) and local per-
turbations due to the presence of the body. The latter
decrease in magnitude as the distance from the object in-
creases [Fig. 2).

Incidently, it doas not matter whethar a body is placed in
a stream of flowing air — a.g. in a wind tunnel — or moves
with constant velocity through a mass of still air. In both
cases the flow field is identical.

The flow fields considerad here are steady, that is, they
dao not vary withtime. The path along which an individual air
particle travels is a streamiine, According to this definition,
air particles do not move perpendicular o a streamline,
Consequently, the surface of a body in a flow field must

be a streamiine (two dimensional flow, for example around
an airfoil section) or defined by a set of streamlines (three
dimensional flow, for example a wing or fuselage). In all
the cases examined hera the law of conservation of mass
applies — in fluid mechanics this principle is expressed
through the continuify equation.

Reynolds number and boundary layer

Due to their complexity, the Navier-Stokes equations do not
lend themselves to closed-form solutions suitable for use in
calculating the aerodynamic characteristics of sailplanes.
Fortunately, the nature of sailplane aerodynamics allows
these equations to be simplified considerably. The primary
simplification results from the fact that, throughout most
of the flow field, the inertial forces are considerably more
significant than the viscous forges, For a given flow field,
the relationship between these forces is characterized by
the Reynolds number, defined as follows:
Vil Inertial Forcos

Re = —

= (5
v Yiscous Forces

Here V.. is the freestream velocity [mfs], | a characteristic
length [m] of the body {for example the airfoil chord ar the
fuselage length), and v the kinematic viscosity of the air
[m?fs]. The Reynolds number itzelf is dimensioniess.

Table 2: Typical sailplane Reynolds numbers. Based on kine-
matic viscosity v = 1.5 107 m’ /s and a range of wing chords, c.
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Typical Reynolds numbers for sailplane airfoils are shown
in Table 2. The data indicate that the inertial forces in the
flow field about a sailplane are around a million times larger
than the viscous forces. For this reason the viscous forces
can be neglected throughout most of the field, allowing
use of the simpler inviscid flow equations. Viscous forces
become significant arily in a relatively thin layer near the
surface of the aircraft, the boundary layer. The higher
the Feynolds number, the thinner the boundary layer be-
comes relative to the characteristic length of the body. The
boundary layer near the leading edge of a sailplane wing
iz typically around a few millimetars thick, growing steadily

| to a centimeter or more near the trailing edge.

The idea of splitting the fluid flow problem into an invie-
cid, potential theory part and a viscous part, the bound-
ary layer, originated with L. Prandtl in 1904 and is the
comerstane of moderm fuid mechanics and aerodynam-
ics, Boundary-layer theory plays a crucial role in deter-
mining the aerodynamic properties of an aircraft and has
become a science of its own (zee H, Schlchting [22]). Air-
toil drag and maximom |ift coefficients are strongly affected

| | by boundary-layer phenomena. On the other hand, the

effect on pressure distribution and lift is relatively insignil-
icant. An underying assumption in boundary-layer theory
is that the static pressure at a given point on the surface
of an aircraft remains constant throughout the thickness of
the boundary layer. In other words: the pressure at the
edge of the boundary layer i5 identical to the pressure at
the corresponding location on the aircraft surface (Fig. 3).

plx.z") = plx. 17

When determining the pressure distribution and lift (with

|+ the exception of the maxirmum lifth one may assume invis-
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Fig. 3: Potential {inviscid) and viscous flow.
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cid flow without introducing significant errors, Improved
results are obtained by correcting the pressure distribution
to account for the thickness of the boundary layer.

The assumption of inviscid flow reduces the Navier-
Stokes equations to the considerably simpler Evler equa-
tions. It can be shown that all solutions to the potential
equation, a well known equation in mathematical physics
{electramagnetic theory, in particular), are also solutions
to the Euler equations. Inviscid flow around an airfoil or a
three-dimensional body is therafore referred to as potantial
flow.

Mach number and incompressible flow

A further simplification results from the fact that sailplane
airspeeds are small compared to lhe speed of sound
fa = 340mis at sea level). The ratio of the airspeed to
the: speed of sound is the Mach number.

M= EE:— = Mach number

(8)

Al low Mach numbers (M less than around 0.3}, the elas-
tic forces in the air flow can be neglected, f.a he air can be
considered incompresaible without significant error. 1 this
case the density p becomes a constant, no longer depen-
dent on the pressure. Since. for the most part, sailplanes
fly with M < 0.3, this book assumes incompressitic Tlow
throughaut.

This assumption is not warranted in the case of modern
transport and military aircraft. Unlike sailplanes, these air-
craft require swept wings to perform well at high subsonic
Mach numbers.

Some elementary sglutions to the potential equation

For incompressible flow, the potential equation is linear
and thus particularly easy to solve. The property of linear-
ity permits solution of comples flow figlds by superimpos-
ing elementary solutions of the potential equation. Airfoil
and wing theory employs linear superposition to build up
complex solutions from the following basic solutions to the
potential equation (Fig. 4):

= uniform translational flow

= point vortex

= sources and sinks
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Fig. 4: Elementary solutions to the potential flow equation. r  distance from center
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Fig. 5: Thickness form and camber line formed by superposition of sources, sinks, and vortices in uniform transiational
flow.

For example, linear superposition can be used to calcu- can be formed by adding a system of point vortices (Fig. 5).
late the flow field around a symmetric airfoil at zero angle of The mathematics involved in developing solutions to the
attack by combining the solutions of a system of sources. potential equation need not be discussed here in great
An airfoil at a non-zero angle of attack and/or with camber  detail. However, it should be mentioned that there is a




direct relationship between vorticity and lift that plays an
important role in determining the flow about a complete
three-dimensional wing. This will be discussed in a follow-
ing section — but first another important result must be
introduced. )

Bernoulli’s equation

Integrating the Euler equations leads to a relationship
known as Bernoulli’s equation (Eq. 9), which states that
in steady, incompressible, inviscid flow, the total pressure
pr, i.e. the sum of the static pressure p and the dynamic
pressure g, remains constant along a streamline. if the
flow is irrotational, the result applies to the entire flow field.
This means, for example, that the sum of the static and
dynamic pressures far upstream of the aircraft (po, and
Ueo, respectively) is equal to the sum of the local static and
dynamic pressure p; and gy at any arbitrary point on the
aircraft (Fig. 6):

PT = Poo+ T Bernoulli's Equation.  (9)
= p,+q,

The dynamic pressure is a measure of the kinetic energy
of the air particles in the flow field and is defined as follows:
Qoo = gv; Dynamic Pressure.  (10)
The static pressure is a measure of the potential ("pres-
sure”) energy of the air particles. In this interpretation,
Bernoulli's equation is an expression of the law of conser-
vation of energy. An increase in the local kinetic energy
(i.e. local velocity) is accompanied by a corresponding re-
duction in potential energy (static pressure). As will be
discussed, this exchange between pressure and velocity is
of particular significance to the production of lift.

Airspeed measurement

Total pressure, static pressure, and dynamic pressure can
be measured using static ports and/or probes positioned
within the air flow (Fig. 7).

The total pressure is measured with a Pitot tube, a
tube with an opening on the forward end into which the
freestream enters and is decelerated to zero velocity. The
total pressure and static pressure measurements are often
combined in a single Prandtl tube (Pitot-static tube, Fig. 7).
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Fig. 6: Relationship between velocity and static pressure
(Bernoulli's equation)

Instead of a combined Pitot-static tube, a simple Pitot
tube may be used together with static ports positioned at
points on the aircraft surface where the local static pres-
sure is approximately equal to the freestream static pres-
sure. However, the ideal position varies with angle of attack
(i.e. airspeed), giving rise to a position errorin the airspeed
measurement. Static pressure may also be measured us-
ing a simple tube, closed at the front, with holes drilled on
its sides some distance from the forward end.

Dynamic pressure is the difference between the mea-
sured freestream static pressure p and total (Pitot) pres-
sure pr. The airspeed indicator is essentially a pressure
gauge that measures the difference between the static and
total pressure. From Egs. 9 and 10:

(2/p)pT — P) (11)

Since the air density p varies with ambient conditions (in
particular, altitude), the airspeed indicator is calibrated to
sea level standard conditions:

Voo = Vrag =

e

Vens = (12)

(2/po)(pr — P)

Veas, the equivalent airspeed, is equal to the true airspeed
only at sea level standard conditions. Veag is the primary
quantity of interest when considering the forces acting on
a sailplane. In JAR-22 [49] the airspeeds at which the ma-
neuver loads, gust loads, and flutter characteristics must
be investigated are equivalent airspeeds, Veas.

A simple relationship between equivalent and true air-
speeds can be derived from Eq. 3 and the definition of
dynamic pressure, 4., (Eq. 10):

Veas = VOV1as (13)
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Fig. 8: Relationship between Mach number (M), equivalent airspeed (Vgas),
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Both equivalent and true airspeed are directly related to  Bernoulii’s equation. Thus, even assuming zero static po-
Mach number. The speed of sound in dry air varies only sition error and a perfectly calibrated instrument, the air-

with ambient temperature: speed indicator may indicate an airspeed that is slightly
higher than Veas. This is the calibrated airspeed, Vcas.
a=VyRT (14) " Since the compressibility correction varies with pressure

ratio, 8, itis not possible to calibrate an airspeed indicator to

indicate equivalent airspeed at all altitudes. In practice, air-

speed indicators are calibrated so that compressibility cor-

rection AV is zero at seafével (i.e. Voas=Veas). Sailplanes

typically operate at airspeeds and altitudes for which the

Veas = aoMVvs (15) compressibility correction is negligible — at hy = 10,000 m

_ and Vecag=300 km/h, the correction AV is only approxi-

Vms = 2MVB (1) mately 3 km/h. The details of the calcufation of the com-

The relationship between true airspeed, equivalent air- pressibility correction may be found in texts on aircraft per-
speed, Mach number, and dynamic pressure is shown formance, for example S. K. Ojha [19].

- schematically in Fig. 8. Another parameter of interest is the indicated air-

Due to the effects of compressibility, the total pressure  speed, Vias. This is what the pilot reads on the airspeed in-

in the Pitot tube is slightly higher than that predicted by dicator, and reflects all sources of error (compressibility, po-

where v is the specific heat ratio (y = 1.4 in air). This
relationship, together with the definition of Mach number
(Eq. 8), the universal gas law (Eq. 5), and Eg. 13, lead to
the foilowing simple relationships:




sition error, instrument calibration, etc.). Unlike the struc-
tural requirements, which are defined with respect to equiv-
alent airspeeds, JAR-22 requires that operating airspeed
limitations be provided to the pilot in terms of indicated
airspeed [49].

In this book, where not otherwise specified, airspeeds
are assumed to be Vqas.

Lift and Potential Flow
Circulation and lift

The primary purpose of the wing is to provide lift. Central
to the production of lift is the relationship between the wing
geometry (airfoil, planform, and twist) and the distribution
of lift over its surface. This relationship is calculated using
point vortices and a derived quantity, circulation.

An individual vortex is associated with a radially sym-
metric velocity field having circular streamlines centered
around the vortex location (Fig. 9). The velocity w is con-
stant along a given streamline, but decreases with the dis-
tance from the vortex center. Multiplying the velocity w at
a distance r with the length of the streamline (that is, the

circumference of a circle with radius r) yields the circulation:
T = 2rrw(r) (17)

The flow about a vortex has the property that the circu-
lation measured along any path enclosing the vortex is the

Fig. 9: Velocity field induced by a two-dimensional vortex of
strength I.
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Fig. 10: Circulation around a system of two-dimensional vor-
tices. =T+l +I3+14+I5

same, regardless of the shape or size of the path. This
result is generalized to a system of vortices: the circulation
measured about any closed path enclosing a system of
vortices is equal to the sum of the circulation due to each
individual vortex (Fig. 10):

F=j£wcoscpds (18)

T=Ty+T2+I3+T4+T5

Fig. 11 shows the velocity field due to a system of vortices
superimposed on a uniform translational flow field. Above
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Fig. 11: Lift produced by superposition of a system of vor-
tices in uniform translational flow.
w perturbation velocity induced by vortex system




Fig. 12: Lift L due to bound vortex of strength I" in potential
flow. According to the Kutta-Joukowsky theorem, lift L = pVI'b
and is perpendicular to both velocity vector and bound vortex.
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Fig. 13: Vortex models in Helmholtz vortex theorem.
- infinitely long vortex

- ring vortex
- horseshoe vortex

the vortex system, the translational velocity V., is added to
the velocity due the vortex system, resulting in an increased
velocity Vo, + w. On the other hand, below the vortex

y

o o)

system the velocity contribution from the vortices opposes
the freestream velocity, resulting in a reduced total velocity
of Vo — w. Therefore, according to Bernoulli's equation,
the static pressure above the vortex system p, is lower
than the freestream pressure, p.,, and below the vortex
system the static pressure p; is higher. If the vortex system
is located within an airfoil, this pressure difference results in
an upwards force L perpendicular to the freestream velocity
V.. By convention, the force acting perpendicular to the
direction of flow is defined as lift, and the force along the
direction of flow, drag.

The [ift L is proportional to the total circulation T of the
vortex system, the freestream velocity V,, the density p,
and the span b (Fig. 12):

L=bpVeT (19)

This result is the Kutta—J(;ifkowsky theorem.

Modeling wings with vortices

Before the Kutta-Joukowsky theorem is used to calculate
the flow about a wing, a few special characteristics of vor-
tices must be mentioned. According to the Helmholtz
vortex theorem individual vortices in an inviscid three-
dimensional flow field neither begin nor end in the fluid
— they must either be infinitely long or form a closed path
(Fig. 13). This property leads to a distinction between the
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Fig. 14: Vortex model of idealized
two-dimensional wing.

two-dimensional problem (airfoil theory) and the three di-
mensional problem (wing theory).

For a two-dimensional wing, the vortex model consists of
a system of infinitely long vortex filaments distributed along
the chord of the wing (Fig. 14). The two dimensional wing
extends to infinity in the y-direction — that is, perpendicular
to the freestream velocity and direction of lift. The ftow field
is thus identical in any plane defined by y=constant. Airfoil
geometry and pressure distribution are functions of x and
z only, hence the term “two-dimensional” wing.

The vortex modeit for a finite span wing is considerably
more complicated. According to the Helmholtz vortex the-
orem, the vortex filaments cannot simply come to an end at
the wingtips, but instead bend backwards, extending down-
stream to infinity. This forms a horseshoe vortex, consist-
ing of a *bound” vortex within the wing and a pair of free
vortices trailing aft from the wing tips (Fig. 15).

If a wing were modeled with a single horseshoe vortex,
the lift would be evenly distributed along its span. In reality,
the lift (in other words, the circulation) varies along the
wing, tapering to zero at the tips. At a given point on the
wing, a spanwise change in the bound circulation AT must
be accompanied by a trailing vortex of the same strength.
One can thus model the flow about a wing with a system
of superimposed horseshoe vortices (Fig. 16). The trailing
vortices are particularly strong near the tip, tending to “roll
up” a short distance downstream of the wing to form a
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pronounced tip vortex. Tip vortices are easily visualized,
for example, with a small windmill placed downstream of
the wingtip of a wind-tunnel model.

Just as the lift on a wing can be determined by combin-
ing a system of vortices with a uniform flow field, the actual
form of the aircraft, in particular the thickness distributions
of the wing and fuselage, can be modeled by further su-
perimposition of a system of sources. This need not be
discussed in detail here; rather, the reader is referred to
the aerodynamics texts listed at the end of this section.

Velocity induced by a vortex system

Uniform translational flow is characterized by constant ve-
locity and pressure. Introducing a system of sources, sinks,
and vortices produces an additional velocity field, inducing
a perturbation velocity throughout the entire flow field. The
local velocity at a given point in the field is the sum of
the translational and perturbation velocities, with the local
static pressure following from Bernoulii's equation.
Induced effects are of particular importance to aircraft
design and analysis. For example, an analysis of the flow
around a wing must consider the fact that the wing is op-
erating in an induced flow field generated by its own vor-
ticity. The fuselage and empennage are also affected by
the velocity field induced by the wing, and in turn gener-
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Fig. 16: Representation of a three-dimensional wing by a
system of horseshoe vortices.

pressure equalization at wingtips
- circulation distribution
vortex system

ate an induced flow field affecting the wing. These latter
effects are termed wing-fuselage interference and wing-
empennage interference. The wing induces an upwash on
the portion of the fuselage extending upstream of the wing,
and a downwash on the aft portion of the fuselage and
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Trailing Fig. 15: Thfee-c.iimensional wing
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empennage. This variation in induced velocity along the
longitudinal axis of the sailplane influences the design of
the fuselage and horizontal stabilizer (Fig. 17).

The velocity field associated with a system of vortices
and potential sources is calculated using the Biot-Savart
law. For the general case of a vortex system of arbitrary
geometry, the resulting expressions can be quite complex.
Considerable simplification results, however, by assuming
that the vortex filaments are straight and infinitely long.
Fortunately, in the case of sailplane wings, this proves to
be a valid assumption.

Computational methods in wing and airfoil aerody-
namics

Analytic methods for wing and airfoil aerodynamics are di-
rected at two problems. In the first, a pressure and velocity
distribution over the airfoil and/or wing are specified, and
the airfoil and wing planform required to generate these
distributions are determined. This is the design problem
{also called the inverse problem). In the second case, the
airfoil and wing planform aré prescribed, and the resuiting
pressure and velocity distributions are computed. This task
is the analysis problem. Both problems arise frequently in
the course of aircraft design.

Computational methods for sailplane aeredynamics are
based on the vortex and potential source models de-
scribed in the previous sections. Another class of meth-
ods, based on conformal mapping, are frequently used
as well. Practical implementations of computational meth-
ods have been developed by Riegels, Weber, Eppler anc
Drela [1,23,24,173,177-180, 191].

Typically, the problem is broken down into twe parts, (1}
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Fig. 17: Velocity perturbations induced by wing on fuselage and empennage

determination of the induced velocity over the wing us-
ing the Biot-Savart law and (2) application of a kinematic
boundary condition to obtain the actual flow field about the
wing. The boundary condition states that at every point on
the wing the resultant velocity is parallel to the local sur-
face (Fig. 18). This is equivalent to stating that no air flows
through the surface of the wing.

The mathematical expression of the kinematic bound-
ary condition can be quite complex and, depending on the
method used, finding a solution to the governing equations
that satisfies the boundary conditions can require consid-
erable computational effort.

While the most powerful computational hardware is usu-
ally found at universities and research organizations, the
advent of inexpensive personal computers has made it pos-
sible for almost anyone to make use of sophisticated com-
putational tools for aerodynamic analysis. Several software
packages are commercially available. A detailed under-
standing of the underlying theory is not absolutely neces-
sary; it suffices to understand the preparation of the input
data such as airfoil coordinates, analysis options, and so
forth.

coeee
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Fig. 18: Kinematic boundary condition. Local velocity is tan-
gent to airfoil surface.
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One important boundary condition is the Kutta condition,
which plays a central role in determining the flow about an
airfoil. The Kutta condition states that the flow departs the
sharp trailing edge of an airfoil in a smooth fashion, or, said
another way, that the rear stagnation point always lies at
the airfoil trailing edge'. The Kutta condition establishes
the circulation about an airfoil, and for this reason small
modifications to the trailing edge can have a significant
effect on its lift.

The aerodynamics of a finite span wing depend on the ef-
fects of the vorticity it trails downstream. Analyzing a wing
of arbitrary planform requires considerable computational
effort because the effects of the complete vortex system
must be integrated over the entire wing. The well known
lifting-line theory of L. Prandtl, the first method to allow cal-
culation of the aerodynamic characteristics of a finite-span
wing, is based on a number of simplifying assumptions
(Fig. 19):

e The wing and its system of trailing vortices lie entirely
inthe x —vy pla__r]',e__.

e The wing is unswept and the trailing vortices are con-
sequently of equal length.

At any spanwise location y, the local downwash in-
duced by the trailing vortex system does not vary over
the chord of the wing.

The latter assumption implies that the wing chord is small
compared to the wing span, i.e. the aspect ratio is large (a
value of R = 5 is considered the minimum for application

‘for cusped trailing edges, the condition simply ra:
lower surface velocities to be identical at the trailirg
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of lifting-line theory), and allows the downwash w; to be
treated as a function of a single variable, the spanwise
coordinate y.

The effect of superimposing the induced downwash w;
on the free stream velocity V., can be approximated by
rotating the free stream velocity V., through an angle
tan oi(y) = wily)/V. As with the downwash, this induced
angle of attack varies along the wing span.

The wing has a geometric angle of attack oy relative to
the direction of flight, i.e. to the free stream velocity V., far
upstream of the sailplane. If the wing is built with twist, the
geometric angle of attack will vary along the span of the
wing, and is therefore a function of the spanwise coordinate
y as well.

The induced downwash has the effect of reducing the
geometric angle of attack at a given spanwise location by
an amount equal to the induced angle of attack, resulting

in an effective angle of attack (Fig. 20):

e (y) = ogly) — oi(y) (20)

This is an equation of considerable importance. [t may
be interpreted as follows: At each location along the span
of an unswept, high aspect ratio wing subject to a steady
free stream velocity at angle of attack oy, the local aerody-
namics may be represented by a two-dimensional section
having an identical airfoil and operating at an effective an-
gle of attack ot. ’

This result allows the results of two-dimensional airfoil
theory to be transfered to a finite span wing on a section-
by-section basis. The pressure distribution over a cross
section of a three-dimensional wing can therefore be deter-
mined from two dimensional results obtained for the same
airfoil operating at the effective angle of attack, c.

Incidently, for a given lift (that is, for a sailplane of given
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weight), the greater the wing span, the smaller the down-
wash and induced angle of attack. As the span increases
without limit, the downwash approaches zero and the flow
about the wing becomes increasingly two-dimensional.

Prandtl’s lifting-line theory allows us to calculate the in-
duced angle of attack and sectional (local) lift along the
wing span. However, despite the simplified vortex sys-
tem that assumed by the theory, the mathematics remain
somewhat complex (see also [23,24]). It was only with
the introduction of Multhopp’s numerical method [96] that
this theory became useful for practical applications. The
Muithopp method can be easily implemented in a com-
puter program (for example, see Redeker [103]) that takes
the wing planform, twist distribution, and two-dimensional
airfoil characteristics as inputs, and calculates the span-
wise distributions of induced angle of attack, global lift and
moment, and induced drag (the latter is discussed in a fol-
lowing section). The method is readily extended to allow
analysis of wings with various flap and aileron deflections
(see also Feifel [78]).

Fig. 20: Local velocity vector V(y) and resulting force vector
F at cross section y of a three-dimensional wing (see also
Fig. 19).

0gq geometric angle of attack
. effective angle of attack
o;  Induced angle of attack
Di  induced drag

L lift

Induced Drag

According to the Kutta-Joukowsky theorem, a vortex placed
in a free stream is associated with a force perpendicular to
both the local velocity and the vortex line. In the case of
a finite-span wing, the direction of the freestream velocity
Voo is modified by the induced angle of attack ;. The lift
is generated perpendicular to the local effective velocity,
not the velocity far upstream of the wing. Since the lift
and drag of the complete sailplane are defined as forces
perpendicular and parallel to the direction of flight (i.e. ve-
locity far upstream), the local sectional lift contributes to
the drag as well as the lift (Fig. 20). This induced drag
is an inevitable consequence of the production of lift on
a finite-span wing and is present even in an inviscid fluid.
According to Prandtl’s lifting line theory, the coefficient of
induced drag Cp, is proportional to the square of the lift
coefficient and inversely proportional to the aspect ratio.
The energy lost by the aircraft due to induced drag ap-
pears as kinetic energy in the trailing vortex system, partic-
ularly in the tip vortices. The tip vortices trail relatively far
downstream, gradually dissipating due to viscous effects.
All pilots are familiar with the dangers associated with these
tip vortices and are trained to follow wake avoidance pro-
cedures when operating in the vicinity of large aircraft. An
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Fig. 21: Flow along a flat plate.
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Fig. 22: Velocity profiles u(z) and particle motions for laminar, turbulent, and separated boundary layers.

encounter with the wake turbulence generated by a large
transport aircraft can cause loss of control or structurai
faiture [8].

Viscous Effects and Boundary Layers
Laminar and turbulent boundary layers

Although the boundary layer is very thin, extending over
only a small portion of the flow field around the aircraft, it
plays an important roll in determining a number of aero-
dynamic characteristics. Drag and separation-related phe-
nomena such as maximum lift coefficient and pitching mo-
ment variation can be explained only with reference to
boundary-layer theory.

Inviscid flow assumes that the flow field extends to the
surface of the body, with no decrease in velocity as the
surface is approached. In reality, a boundary layer exists
adjacent to the body in which the velocity diminishes from
the local potential flow velocity down to zero at the surface
(Fig. 21). This so-called no-slip condition results from the
fact that the air can interact with the surface at a molecular
level, even when the surface is highly polished. Starting
at zero velocity at the surface, within the boundary layer,
the velocity gradually increases from zero at the surface
to the velocity predicted by inviscid potential flow. The ve-
locity distribution within the boundary layer is its velocity
profile. The boundary-layer thickness is defined as the dis-
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tance from the surface to the location at which the velocity
reaches 99% of its local potential-flow value.

Boundary layers are classified as laminar, turbulent, and
separated. In a laminar boundary layer, the air particles
travel along smooth streamlines parallel to the surface.
The velocity varies within the boundary layer, giving rise
to shear stresses and loss of kinetic energy in the flow
(Fig. 22).

In a turbulent boundary layer, the air particles undergo
additionat high-frequency velocity variations of a random
nature. Although these variations are smail compared
to the average velocity, they contribute to the energy ex-
change between the boundary layer and the external flow,
as well as within the boundary layer itself. The velocity pro-
file in a turbulent boundary layer is thus “fuller” than that of a
laminar boundary layer, exhibiting higher velocities near the
surface and a steeper velocity gradient at the surface itself.
With increased velocity gradients come increased shear
stresses, so that in general, turbulent boundary layers pro-
duce higher skin friction than laminar boundary layers.

Separated flow

Inthe presence of an adverse pressure gradient (increasing
static pressure), the boundary layer may separate from the
surface of the body. The flow travels away from the surface
at a separation pointin a chaotic fashion. Separated flow
is often characterized by large-scale unsteady turtulence
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with no clearly defined streamlines. The velocities near the
surface may actually become negative. On the other hand,
a laminar boundary layer may separate smoothly, often
reattaching shortly downstream of the separation point.

In order to understand the process of separation, con-
sider the path of an air particle near the upper surface of
an airfoil (Fig. 23). The particle travels along a streamline
that defines the airfoil surface. This streamline originates
far upstream of the airfoil and leads to the stagnation point
at the leading edge of the airfoil, at which point it splits and
extends over the upper and lower surfaces of the airfoil.
The streamlines join again at the trailing edge and from
there extend downstream of the airfoil.

The pressure distribution along this streamline is a func-
tion of the airfoil geometry and angle of attack. Let us
consider a typical airfoil (1) at zero angle of attack and
(2) at a relatively high angle of attack. In the first case,
a flat pressure distribution develops with little variation in
pressure. In the second case, however, one observes a
very strong pressure gradient and flow separation.

in both cases the flow decelerates from the freestream
velocity Vo, to zero velocity at the forward stagnation point.
Subsequently, the flow accelerates and the static pressure
decreases to a certain minimum value. In inviscid flow, aft
of the point of minimum static pressure, the static pressure
increases and the velocity decreases until the trailing edge,
where the velocity is theoretically zero. The flow acceler-
ates downstream of the airfoil until it reaches its original
(freestream) velocity and static pressure. Thus, a continual
exchange between kinetic energy (velocity) and potential
energy (pressure) takes place along the streamline.

In viscous flow, however, there are energy losses in the
boundary layer. Even when the pressure gradients are
weak, the total pressure at the trailing edge will be consid-
erably lower than the freestream total pressure; however,
the effect on the overall flow field is minimal. On the other
hand, if the adverse pressure gradients aft of the pressure
minimum are sufficiently strong, the flow in the boundary
layer may decelerate to a full stop and even begin to travel
in the reverse direction. That is, the flow separates.
~ Separation may be visualized with the help of a simple
physical analogy. A ball rolled with initial velocity V along a
curved track with the same shape as the airfoil's pressure
distribution will experience an exchange between kinetic
and potential energy analogous to that experienced by the
air particles. If the ball loses energy through friction, it may
come to a halt before the second peak, failing to reach the
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top and rolling back towards the low point in the path. In
the analogy, this corresponds to flow separation.

Separation occurs in sailplanes wherever sutficiently
strong adverse pressure gradients are encountered. These
are always present on wings at high angles of attack and
limit the maximum attainable lift. At the same time, the
airfoil drag increases due to changes in the static pres-
sure distribution. Strong adverse pressure gradients are
also found on the aft faces of blunt bodies such as landing
gear and dive brakes, leading to local flow separation and
substantial increases in drag.

Boundary-layer transition

The boundary layer over a sailplane wing begins as lami-
nar and attached, and may progress in sequence to lam-
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Fig. 24: Behavior of laminar boundary layer under various
pressure distributions and Reynolds numbers:
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inar/separated, turbulent, and turbulent/separated. At the
forward stagnation point, where the boundary layer forms,
the flow is normally laminar. However, the laminar flow
is only stable under certain conditions, so that in general
the boundary fayer will transition to a turbulent state after
a certain distance. Both laminar and turbulent boundary
layers may separate in the presence of an adverse pres-
sure gradient along the direction of flow. However, since
turbulent boundary layers are characterized by increased
energy transfer with the flow outside the boundary layer,
they are better able to overcome adverse pressure gradi-
ents without separation. Laminar boundary layers, on the
other hand, may separate in the presence of relatively small
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adverse pressure gradients. Depending on the local flow
conditions, a laminar boundary layer may separate perma-
nently or become turbulent while separated and reattach.
The latter case is accompanied by the formation of a so-
called laminar separation bubble (Figs. 24,25).

Whether and where these phenomena occur depends
on the following parameters:

e Pressure distribution (Airfoil geometry and angle of
attack)

¢ Reynolds number

¢ Surface quality (smoothness, waviness, contamination
by rain, snow, ice or insects)

¢ Level of turbulence in the oncoming flow
The following factors help maintain laminar flow:

Favorable pressure gradients, for example in the area
of the leading edge

Low Reynolds numbers, for example as observed on
model airplanes and birds

High surface quality with no roughness, waviness,
or contamination (as typical of modern fiberglass
sallplanes)

Low turbulence in the oncoming flow, for example in
flight or in laminar wind tunnels.

While low frequency atmospheric turbulence presents
no problem in this respect, the high frequency turbulence
typical of many wind tunnels can have a significant effect
on boundary-fayer development.

A sound physical understanding of boundary-layer tran-
sition phenomena is a‘prerequisite to the design of high
performance sailplane airfoils. Since skin-friction coeffi-
cients are so much lower when the boundary layer remains
laminar, it is important to ensure that boundary-fayer tran-
sition occurs as far back on the airfoil ds possible. Sep-
aration, on the other hand, incurs large drag penalties,
and for this reason care must be taken to ensure that
the transition occurs before the boundary layer can sep-
arate. This is accomplished by tailoring the airfoil geom-
etry, and, where required, by means of special devices
such as “zig-zag tape” or pneumatic turbulators (Fig. 26;
see also {72,166, 168, 183-185,192]). It is especially dif-
ficult to develop airfoil shapes with extensive laminar flow



Fig. 26: Boundary-layer tripping devices (turbulators)
have become a common sight on modern sailplanes.
Above left, “zig-zag” tape bonded to the airfoil under-
side just ahead of the aileron (Nimbus 4 inner wing
panel). The tape terminates just before the end of
the wing panel to allow the gap to be properly taped
during assembly. Left, zig-zag tape on vertical stabi-
lizer, in this case integrated with the rudder hinge gap
seal. Above right, ASW-27 outer wing section lower
surface. Here, laminar flow extends onto the aileron
itself. The boundary layer is tripped by means of a se-
ries of blow-holes arranged spanwise along the aileron
lower surface. The holes communicate with a plenum
that receives air either from a-.gmall Pitot tube or (in
this case) a NACA-inlet. The short length of zig-zag
tape upstream of the inlet improves inlet efficiency by
energizing the boundary layer.
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Fig. 27: Pressure drag due to separation (cylinder) and skin-friction drag due to boundary layer (flat plate)

at both low and high angles of attack (that is, both in high
speed and thermaling flight). See also R. Eppler [176] for
an empirical approach to the prediction of boundary layer
transition.

Friction drag and pressure drag

The shear stresses associated with the boundary layer
act in a direction paraltel to the local surface; when in-
tegrated over the entire surface of an aircraft or an airfoil,
they yield the friction drag. Similarly, the local static pres-
sure also acts on the aircraft surface, albeit perpendicular
to the local surface. The integrated effect of the static pres-
sure includes a drag component termed the pressure drag
(Fig. 27).

Separated flow, whether over a stalled airfoil or an un-
faired strut, can be a significant source of pressure drag.
Even if there is no flow separation, the shear forces within
the boundary layer can have an adverse effect on the static
pressure distribution, providing a further source of pressure
drag. The induced drag of a finite-span wing may also be
categorized as a form of pressure drag. Other significant
sources of pressure drag include unfaired landing gear,
antennas, exposed control linkage, extended dive brakes,
localized areas of separation about the wing-fuselage junc-
tion, the empennage, and unsealed control surface hinge
gaps.

Friction drag is present with both laminar and turbulent
boundary layers. Consider a flat plate oriented parallel
to the freestream. In the inviscid potential flow solution,
the static pressure along the plate is constant, allowing
the boundary layer to be examined free of influence from
pressure gradients or flow separation. For this reason the
flat plate is a popular mode! for both theoretical and ex-
perimental boundary-layer research. Of particular interest
are the resuits relating the boundary layer thickness and

Table 3: Theoretical drag coefficients and boundary-layer
thicknesses for flat plates. See also Schlichting [22], Chap-
ters 7 and 21.

faminar | turbulent
1.328 0.074
ici th sides 2—— 2
drag coefficient, ¢4 (both sides) B as
boundary-layer thickness §(x) ox 0.37x
oundary-layer thickn TRe. R
O(x)
V.c
//*ARG — v
Ve —
X Re. = V. x
X
e G ——— v

friction drag, both of which are functions of Reynolds num-
ber. Analytic results for these quantities are presented in
Table 3. i

For example, for a flat plate 1m long subject to a
freestream velocity of 30m/s, these formulas yield a
boundary-layer thickness of 3.5mm (laminar boundary
layer) or 20mm (turbulent) at the trailing edge. The cor-

sailplane airfoils.

The friction drag as calculated by these formulas is pre-
sented graphically in Fig. 28. In order to facilitate compari-
son with data from actual airfoils, the results are presented
for a two-sided flat plate. At low Reynolds numbers, the
boundary layer remains laminar over the entire plate. Con-
versely, at very high Reynolds numbers the drag contribu-
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Fig. 28: Skin friction drag of two-sided flat plate as a function of Reynolds number, compared with minimum drag coeffi-

cients of some typical airfoils.

tion from the initial laminar portion of the boundary layer is
negligible, and the drag approaches the value obtained by
assuming a completely turbulent boundary layer. Sailplane
airfoils typically operate in a transition region where both
the laminar and turbulent portions of the boundary layer
- contribute significantly to the total drag. It is apparent that
where the boundary layer is primarily turbulent, the drag is
much higher than would be observed with a primarily lam-
inar boundary layer. Low drag requires the boundary layer
to remain laminar to the greatest extent possible.

- Figure 28 includes data for a few sailplane airfoils for ref-
erence. The airfoil data differ considerably from the simple
flat plate results because of the static pressure variations
present along the airfoil surfaces. More detailed airfoil anal-
ysis may be performed using one of several modern soft-
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Transition region, high turbulence environment (typical wind tunnel)
Transition region, low turbulence wind tunnel or free atmosphere

ware tools for the detailed design and analysis of airfoils.
One well-known program by Eppler [177,180} is specifically
intended for use in the design of airfoils for special appli-
cations (“airfoil tailoring”). This program computes the lif,
drag, and pitching moment coefficients of prescribed air-
foils as a function of Reynolds number and angie of attack.
Boundary-layer effects are included. The program aiso
solves the inverse problem (determining the, airfoil shape
required to achieve a prescribed velocity distribution). An-
other well-known program is XFOIL by M. Drela [173], an
interactive, graphical design and analysis tool with similar
capabilities, including viscous analysis of existing airfoils,
prediction of boundary-layer transition, laminar separation
bubbles, turbulent separation, solution of inverse problem,
and rapid evaluation of airfoil modifications.
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hydraulically smooth
increased drag due to roughness

Surface roughness is essentially a field of small am-
plitude irregularities. In a laminar boundary layer, if the
irregularities exceed a certain maximum height, the flow
may become turbulent. This maximum tolerable rough-
ness is termed the critical roughness and is a function of
the Reynolds number and pressure distribution. For a flat
plate, the critical roughness k is given by the following for-
mula:

Kerit 2.4 .
L Critical Roughness 21
5 ~ VRe. - g @

This means that the roughness must not exceed a value
of 1/10 to 1/15 the local boundary-layer thickness. If the
roughness remains helow this value, it has no influence on
the laminar boundary layer or the drag (Fig. 29).

For turbulent boundary layers, the drag begins to in-
crease as soon as the roughness exceeds a minimum
significant value, known as the permissible roughness.
The permissible surface roughness is also a function of
Reynolds number:

Kperm _ m

X Rey (22)

Permissible Roughness

If the roughness is less than the permissible rough-
ness, the surface is considered hydraulically smooth. |f




the roughness is greater than kperm, the drag varies directly
with the degree of roughness, as shown in Fig. 28. In the
presence of pressure gradients, however, the surface fric-
tion coefficients may vary considerably from their flat plate
values.

Figure 30 presents a simple surface roughness diagram
developed by F. X. Wortmann [115] for use with sailplanes.
The figure presents the critical surface roughness (lami-
nar boundary layers) and permissible surface roughness
(turbulent boundary layers) as a function of boundary-tayer
length and Reynolds number. [t is evident that surface
roughness as small as 1/100 to 1/10 mm may be detri-
mental. Surface waviness has a similar effect. Sailplane
manufacturers and pilots therefore devote considerable ef-
fort to achieving and maintaining a high surface quality.
Even raindrops or insects can lead to premature transition.
Airfoils vary considerably, however, in their sensitivity to
such surface contamination.

Concluding Remarks

The preceding sections reviewed the basics of fluid me-
chanics relevant to sailplane design. A mathematical pre-
sentation has been deliberately avoided; rather, emphasis
has been placed developing a physical understanding of
the most important phenomena such as the production of
lift and drag. A sound understanding of the physics of the
problem is essential, for only then can one take advantage
of the full range of design possibilities.

This level of understanding is also valuable when in-
terpreting wind-tunnel and flight-test data. These experi-
mental results often reveal surprising and unexpected phe-
nomena, and a good understanding of the basics helps in
developing solutions to unforeseen aerodynamic problems.

The “big picture” is especially important when survey-
- ing the extensive technical literature in aerodynamics, as it
allows ready identification of material having relevance to
sailplane design. Table 4 presents a summary overview of
the main topics in fluid mechanics, outlining the manner in
which the complex fundamental equations are reduced to
the simpler relationships used in sailplane design.

For more detailed presentations of aerodynamic theory,
the reader is referred to texts such as H. Schlichting and
E. Truckenbrodt [24], J. D. Anderson [3,4], and M. Kuethe
and C. Chow [15]. See also R. T. Jones [14] for a concise
overview of wing theory.
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Table 4: Overview of topics in fluld mechanics.

Fluid Mechanics, general case:

Compressible, viscous flow:
Navier-Stokes Equations
Gas laws

Continuity Equation

Flow at high Reynolds numbers (Re > 10%) :

S

inviscid compressible flow:
Nonlinear potential equation

Viscous compressible
boundary layer:
Compressible
boundary-layer theory

Low Mach numbers and High Reynolds numbers

(M < 0.3, Re>10%):

fnviscid
incompressible
flow:

Linear potential equation:
Elementary solutions:

Potential vortices and sources,

Superposition principle
Airfoil theory:

Pressure distribution, lift,
moment

Wing theory:

unswept wing with large aspect
ratio,

Prandtl lifting-line theory

Lift distribution
Induced drag

Viscous
incompressible
boundary layer:

Boundary-layer theory:

- Laminar, turbulent,

and separated boundary layers

Transition, separation,
influence of Reynolds number
and surface quality

Friction drag, pressure drag,
maximum lift
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Fig. 31: Form, camber line, and geometry for NACA 63; — 618

Airfoil and Wing Theory

Wing/Airfoil Geometry and
Aerodynamic Coefficients

Airfoil geometry

Since an airfoil is a cross section of a wing in the plane
defined by y = constant, the airfoil geometry is defined only
in terms of the coordinates x and z. The airfoil geometry
is typically presented as a table of chordwise locations x
and corresponding upper and lower coordinates z, and
z. In order to make this information independent of the
size of the airfoil and the choice of dimensional units, the
coordinates are normalized to the airfoil chord, ¢ (Fig. 31).
The coordinates are presented as x/c and z/c, the values

of which range from zero to unity.

Every airfoil can be defined as a combination of a thick-
ness distribution and a camber line {(mean line). The chord
is the distance between the endpoints of the camber line.
The 1/4-chord point.the point on the chord line lying one
quarter of the chord length aft of the leading edge, plays
an important role as a reference point for the aerodynamic
pitching moment. The angle of attack is the angle between
the chord line and the direction of freestream flow.

Although a fairly large set of coordinates is required to
specify the airfoil geometry to a sufficient degree of preci-
sion, to a certain extent airfoils can be characterized using
just a few parameters. These are the maximum thickness,
the location of the point of maximum thickness, the max-
imum camber, location of maximum camber, the leading-
edge radius, and the trailing-edge angle (included angle
at the trailing edge). These parameters are iliustrated in
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Fig. 32. Usually these are normalized to the airfoil chord in
the same manner as the coordinates.

Wing geometry

A complete description of the wing includes not only the
airfoit‘geometry, but the wing planform and the spanwise
airfoil variation as weill.

In most cases, the leading and trailing edges of saiiplane
wings consist of straight line segments. Thus, the basic
sailplane wing planforms are rectangular, tapered, rectan-
gular/tapered, and doubie or triple tapered (Fig. 33). Men-
tion may also be made of the elliptical wing, which, although
seldom used in modern sailplanes, is of great theoretical
importance in wing theory. Most of the effects of wing
planform can be expressed as a function of two geometric
parameters: the aspect ratio and the taper ratio, defined
as follows (Fig. 34):

AR b%/S
A

Aspect Ratio (23)

(24)

Cl/c Taper Ratio

For a rectangular wing, the aspect ratio is simply the ratio
of the span to the chord (R = b/c). In the case of the
rectangular-tapered and double-tapered wing, the location
of the taper break and the taper ratios of the inner and outer
portion of the wing are required to complete the definition
of the wing geometry.

Most sailplane wings are unswept or only slightly swept.
It should be kept in mind that if the wing is both swept and

Profile form
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Fig. 32: Airfoil geometric parameters.

t thickness

Xg location of maximum thickness
f camber

Xt location of maximum camber
p  leading-edge radius

c chord
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tapered, the sweep angles of the leading edge and the
1/4-chord line (the locus of points located at x/c = 1/4) are
different. The angle between the wing and the y axis is the
dihedral.

Another important geometric parameter is the fwist,
the spanwise variation of the geometric angle of attack
(Fig. 34). The angle about the y axis between a reference
line in the wing (for example, the wing chord line on its
plane of symmetry) and the reference axis of the fuselage
is the wing angle of incidence.

The geometry of the tail surfaces is defined using simifar
parameters.

Pressure coefficient

The pressure distribution over an airfoil and its importance
to the development of the boundary layer has afready been
discussed. When considering the pressure distribution, it
is useful to present the pressure as a nondimensional pres-
sure coefficient. This is the differential pressure between
the static pressure p at a particular location in the flow field
and the static pressure p,, far upstream of the aircraft, nor-
malized to the dynamic pressure Q!

p— Poc
Qoo
V2,

Pressure coefficient  (25)

Cp

i
2

Upon application of Bernoulli's equation to the local ve-
locity u, the pressure coefficient can be expressed as
p - p'oo el

Goo =1_<Voo

The pressure coefficient ¢, is used primarify to present cal-
culated or measured airfoil'pressure distributions (Fig. 35).
Conventionally, in figures such as Fig. 35, negative pres-
sures are plotted in the positive direction of the vertical
axis. In nondimensional terms, the pressure coefficient at
the stagnation pointin incompressible flow is.éxactly 1. The
differential pressure Ac, between the upper and lower sides
of the airfoil is a function of the chordwise coordinate x.

oo Dynamic pressure (26)

u

Cp= (27)

Aerodynamic coefficients

The total aerodynamic force acting on a wing or airfoil may
be resolved into components perpendicular and parallel to
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Fig. 34: Wing geometric parameters.
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Fig. 35: Nondimensional pressure distribution over airfoil.

ACP:

pressure difference between upper
and lower surface at x;

Fig. 36: Aerodynamic forces and moment on an airfoil.

L Lift D Drag M Pitching moment

the flow velocity together with a moment about a prescribed
reference point. The three quantities are Jift, drag, and
pitching moment, respectively. The pitching moment is
referenced to a specified point on the airfoil, usually at the

“1/4-chord point, and the lift and drag may be thought of

as being applied at this location (Fig. 36). If the pitching
moment tends to increase the angle of attack of the wing,
itis defined as positive, or “nose-up”.

As with the pressure coefficients, the lift, drag, and pitch-
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ing moment of a two-dimensional aitfoil are expressed as
nondimensional coefficients. The reference quantities are
the free stream dynamic pressure, g, and the chord c:

Sectional Lift Coefficient (28)
Sectional Drag Coefficient (29)
Sectional Pitching Moment (30)

c= g«
d/QuC

Cm= mM/QeCc?

Cq =

These coefficients also define the local sectional loads, that
is, the lift, drag, and pitching moment per unit span of the
wing. For example, ¢\(y) denotes the lift distribution along
the span of the wing.

Similar definitions apply to the global (total) forces acting
on a wing:

CL= QS Lift Coefficient (31)
Co= D/g.S Drag Coefficient (32)
Cu= M/q.Sc Pitching Moment (33)

As will be discussed, a suitable reference chord ¢ must be
chosen for non-rectangular wings.

The sectional lift coefficient ¢, is obtained by integrating
the pressure difference between the upper and lower airfoil
surfaces over the entire chord:

-] n
o = / Acy(x)d(x/c) = ZACP‘(Xi —Xi_1)c  (34)
0 i=1

Experimental and theoretical aerodynamic characteris-
tics are typically presented in a format such as that of
Fig. 37 in order to highlight the variation of the aerodynamic
coefficients with the angle of attack. Pitching moment data
are presented as a function of lift coefficient in order to
simplify stability analysis.

The figure shows that at moderate angles of attack, the
lift and pitching moment coefficients exhibit a linear rela-
tionship with angle of attack. Above a certain value of
angle of attack, these coefficients depart from their linear
relationships due to flow separation. In the linear region,
the lift and pitching moment coefficients are expressed as
follows:

dey

= — 35

C da(oc 0lp) (35)
dc

Cm = ”&élncl""cmo (36)
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Fig. 37: Aerodynamic forces and moment on an airfoil as a function of angle of attack and lift coefficient

The linear representation of the lift and moment curves c = 0
therefore depends on following four parameters:

dC| . o =0 VOQ cmO 1 N
& Lift-curve slope =Qg - \

dcp,

—— Moment gradient

dC| 9

Clo Zero-lift angle of attack L 7

Cme Zero-lift moment Fig. 38: Zero-lift moment on cambered airfoil.

Gy

The lift-curve slope determines how rapidly the lift coeffi-
cient increases with angle of attack. For this purpose the
angle of attack is usually expressed in radians. slope and moment gradient are relatively independent of
Zero-lift angle of attack and zero-lift moment are illus- the actual airfoil shape, the zero-lift angie of attack and
trated in Fig. 38. If the airfoil is symmetrical (and, in the pitching moment are strong functions of the airfoil cam-
case of a three-dimensional wing, if the wing is untwisted), ber. As the camber increases, these quantities become
both the zero-lift angle of attack and zero-lift moment are  increasingly negative in value.
zero. If the airfoil is cambered (or the wing twisted), these Thin airfoils in inviscid flow have a theoretical lift-curve
parameters are generally non-zero (Fig. 38). An exception slope of 2r (6.28) per radian. In practice, viscous effects
here would be a cambered airfoil with a reflexed mean line.  tend to reduce the lift-curve slope while thickness tends to
These four parameters in the linear airfoil model lend increase it. For the relatively thick airfoils commonly used
themselves to theoretical calculation since they are not on sailplanes, the actual sectional value of the lift-curve
strongly influenced by viscous effects. While the lift-curve slope is fairly close to this idealized value.
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As will be shown,
dimensional wing is also a function of its aspect ratio.

Due to the pronounced influence of turbulence, airfoil
drag and maximum lift coefficient can only be measured in
low-turbulence wind tunnels or in flight test.

the lift-curve slope of a three-

Aerodynamic center and center of pressure

The pitching moment gradient dcn/dg is affected by the
choice of the moment reference point. This is evident in
Fig. 39, which compares moment curves obtained using
various reference points. The figure assumes that the lift
acts at a fixed location (this is in fact the case for a sym-
metrical airfoil). If the airfoil leading edge is chosen as
the moment reference point, a pitching moment will result,
becoming increasingly negative (nose-down) as the lift in-
creases. On the other hand, if the moment is calculated
about the trailing edge, the pitching moment will become in-
creasingly positive (nose-up) as the lift increases. Between
the leading and trailing edges there exists a particular ref-
erence point about which the moment remains constant as
the lift varies, that is, the moment gradient is zero. This
reference point, the aerodynamic center, is of particular
interest to the study of aircraft stability and control, and is
defined by the following relationship:

dcm,,

dC| =0

(37)
Here the subscript “ac” indicates that the aerodynamic cen-
ter is used as the reference point for the moments.

Since the pitching moment about the aerodynamic center
does not vary with angle of attack, it is identical to the zero-
lit moment. The aerodynamic forces on an airfoil may
therefore be broken down into a constant pitching moment
Cm, about the aerodynamic center, and a lift applied at
the aerodynamic center, varying with the angle of attack «
(Fig. 40). This result applies only to the linear region of the
lift and moment curves, that is, no flow separation. Slight
variations may arise even in the linear operating range due
to viscous effects.

~ Thin airfoil theory predicts that the asrodynamic center
is located precisely at the airfoil 1/4-chord, that is,

Xac
(o]

0.25

It

Cmac = Cm 14
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Fig. 39: Effect of moment reference point on pitching mo-
ment gradient.
Reference pointat: a) trailing edge (TE)

b) aerodynamic center

c) leading edge (LE)

of ‘%}

— X, l@— Aerodynamic center

Fig. 40: Aerodynamic center and zero-lift moment.

Here the “1/4” subscript indicates that moments are mea-
sured about the airfoil 1/4-chord. In practice, the aerody-
namic center may vary slightly from the 1/4-chord location,
in which case the relationship becomes:

1 Xae
. = - ——]C 40
Cmm Cmo + <4 c > ] ( )
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Fig. 41: Variation of center of pressure

Not to be confused with aerodynamic center is the center
of pressure. This is the point on the airfoil at which the lift
acts; that is, the reference point about which the pitching
moment is zero. For symmetrical airfoils (¢, = 0), the
center of pressure coincides with the aerodynamic center
atthe 1/4-chord. In the case of cambered airfoils (cm, # 0),
the center of pressure varies with lift coefficient, migrating
forward from infinity towards the 1/4-chord point as the lift
coefficient is increased (Fig. 41). The center of pressure
is rarely used in stability analyses; modern practice favors
the aerodynamic center as a reference point for describing
airfoil properties.

Geometric aerodynamic center and
mean aerodynamic chord

Since the aerodynamic center is of great significance in sta-
bility analysis, it is useful to define an aerodynamic center
for a three dimensional wing as well. In practice, viscous
effects cause the aerodynamic center to vary from its the-
oretically determined position, and a distinction must be
made between the geometric aerodynamic center and the
experimentally measured aerodynamic center. The geo-
metric aerodynamic center of a wing is analogous to the
1/4-chord point of an airfoil, and, accordingly, the geomet-
ric aerodynamic center of a rectangular wing lies along its
1/4-chord line.

If the wing is tapered or swept, an equivalent rectangular

wing may be defined, having the same forces and moments
of the original wing. The 1/4-chord line of the rectangular
wing corresponds then to the aerodynamic center of the
actual wing. The geometry of the equivalent wing is de-
termined by imagining the 1/4-chord line of the original
wing as a beam loaded with weights proportional to the
local chord (Fig. 42). The geometric aerodynamic center
is then the center of gravity of this structure. The chord
of the equivalent rectangular wing, the mean aerodynamic
chord, is based on the chord of the original wing:

— _l * e d 41)
mac.=6 = g c“(y)dy (

—S

The mean aerodynamic chord is not to be confused with
the average wing.chord, defined as

S
Cavg = B (42)

The lift on an individual wing half may be thought of as
acting at a distance

vi= | ety (43)

from the plane of symmetry.

Equivalent
Rectangular Wing

Fig. 42: Mean aerodynamic chord and equivalent rectangular
wing.
¢y mean aerodynamic chord
xac location of wing aerodynamic center
Sk center of mass of ¢/4-line, assuming local mass
loading proportional to focal chord
S wing semi-span
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Airfoil Geometry
and Aerodynamic Characteristics

Airfoil families and profile catalogs

The aerodynamic properties of an airfoil are functions of its
geometry, angle of attack, Reynolds number, and surface
quality. The large number of geometric parameters allows
the definition of a virtually unlimited variety of airfoil shapes.
Designers are often faced with the difficult task of selecting
airfoils based on various operational requirements, and it is
therefore useful to classify airfoils systematically according
to certain characteristics. A number of airfoil families have
been defined and their geometric and aerodynamic data
tabulated in airfoil catalogs.

Over the years, several profile series have been of partic-
ular significance to sailplane designers. A few of these are
now of only historical importance. After the cambered flat
plate used by Lilienthal in his first glider, the first family of
airfoils were the Joukowsky airfoils, defined and analyzed
in closed form using conformal mapping. The Joukowsky
airfoils are more of theoretical interest rather than practical
significance. Relatively few were suitable for use in actual
aircraft. The Géttingen series followed, of which the G 535
and Go 549 were frequently used in early sailplanes.

The NACA four- and five-digit profile series are classi-
fied according to the parameters defining their geometry.
Although seldom used in sailpianes, they find occasional
application even today in powered aircraft. The NACA
6-series profiles are laminar profiles, designed specifically
to allow the boundary layer to remain laminar over the
forward part (30-60% chord) of the airfoil. These airfoils
were quite well suited to the needs of sailplanes and found
frequent application in early high-performance sailplanes.
Experimental and theoretical aerodynamic data for these
NACA profile series are found in a report by |. H. Abbott
and A. E. von Doenhoff [1]. See also F. W. Riegels [191].
One of the earliest design methodologies for laminar flow
airfoils was developed by W. Pfenninger [99].

Airfoils specifically intended for sailplanes were devel-
oped by R. Eppler [174,175,178-180] and F. X. Wort-
mann [163, 168, 196, 198-202]. These airfoils led to
tremendous improvements in sailplane performance and
quickly replaced virtually all earlier profiles. A large body
of experimental data for these airfoils was obtained in
the Stuttgart laminar wind tunnel [203] and published
in the well-known Stuttgart Profile Catalog [168]. See

Fig. 43: Pressure distribution over a symmetrical airfoil at
various angles of attack.

@ @ upper surface pressure distribution at various
angles of attack (see also Fig. 44)
@ zero angle of attack, upper and lower surface
pressure distribution
® boundary-layer transition point
A separation point

also [164,167].

Further laminar airfoils were developed by
K. H. Horstmann and A:z-Quast [182, 193] at the Ger-
man Aerospace Center (DLR, formerly DFVLR). The drag
of these airfoils is minimized by inhibiting the formation
of laminar separation bubbles either by use of pneumatic
turbulators or application of a special flow-tripping “zig-zag”
tape [72, 74, 170] or “bump tape” [165, 166, 183-185].
More recently, L. M. M. Boermans and his students at
the Delft University of Technology have developed and
tested several very low drag airfoils [74,170-172]. Delft's
low-turbulence wind tunnel proved a valuable asset in
this research, Additional work by D. M. Somers and

M. D. Maughmer in the USA include a profile specially
developed for the World Class (169, 188, 195].




Fig. 44: Laminar bucket in
airfoil polar.
a) symmetric airfoil
b) cambered airfoil
Ac;  width of laminar bucket
Acyg  depth of laminar bucket
¢,  design lift coefficient

The laminar bucket

The boundary layer on an airfoil operating at typical
sailplane Reynolds numbers remains laminar until slightly
beyond the point of minimum static pressure. For small an-
gles of attack, this minimum pressure point occurs near the
location of maximum thickness. For this reason, laminar
airfoils are characterized by a relatively aft location of the
point of maximum thickness.

However, the pressure distribution also varies with the
angle of attack. This may be examined in detail taking a
symmetrical airfoil as an example. At o = 0, a symmetri-
cal airfoil generates identical pressure distributions over the
upper and lower surface. If an angle of attack is introduced,

additional pressure yariations are superimposed on these
basic o = 0 distributions. The resultant force of this mod-
ified pressure distribution appears as lift at the 1/4-chord
(aerodynamic center). This is related to the pressure dis-
tribution by observing that the pressure.differential over the
forward portion of the airfoil increases much more rapidly
with angle of attack than the pressure differential on the
aft portion of the airfoil. This distortion of the basic & = 0
pressure distribution has an effect on the location of the
point of minimum pressure and, in turn, the boundary-layer
transition point.

This is made clearer by considering the effects of suc-
cessive increases in angle of attack (Fig. 43). We consider
only the upper surface as this is where the greatest pres-
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Fig. 45: Effect of airfoil thickness on pressure distribution and drag polar (from [1]).

sure variations due to angle of attack are expected. At
negative angles of attack it is the lower surface that be-
comes critical.

Figure 43 shows the airfoil pressure distribution for four
successively higher angles of attack. At small angles of
attack the location of minimum pressure (and thus the
boundary-layer transition point) is located relatively far aft
on the airfoil. As the angle of attack is increased beyond
a certain value, the minimum pressure and boundary-layer
transition points shift relatively abruptly toward the airfoil
leading edge. The portion of the boundary layer that
remains laminar is shortened considerably, with a corre-
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sponding increase in drag. If the angle of attack is further
increased, the pressure gradient becomes so steep that
the flow separates, with a further increase in drag as well
as a decrease in lift. .

Both flow separation and the migration of fhe boundary-
layer transition point are easily recognized in the airfoil drag
polars (Fig. 44). While the drag at small angles of attack
may be quite low, beyond a certain angle of attack a rapid
increase may be observed due to the forward shift in the
boundary-layer transition point. The region of reduced drag
at low angles of attack is the Jaminar drag bucket. The
width of the laminar bucket defines the ¢ range over which
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Fig. 46: Influence of airfoil thickness on minimum drag and maximum lift coefficient (from [1]).

reduced drag is present, and its depth is the drag reduction
itself. Boundary-layer separation at high angles of attack
occurs outside the laminar bucket and is recognizable as
an additional increase in drag.

The same considerations apply to cambered airfoils.
Here, however, the camber of the mean line generates
an additional pressure variation that is superimposed over
the basic pressure distribution. The laminar bucket shifts
upward (that is, towards higher values ¢, — Fig. 44). The
value of ¢ lying in the center of the laminar bucket is the
design lift coefficient.

Influence of airfoil geometry

Airfoil selection is critical to sailplane design, and proper
airfoil selection in turn necessitates a fundamental under-
standing of the effects of individual airfoil geometric param-
eters. These effects are illustrated with the example of the
NACA 6-series airfoils, at one time frequently used in high
performance sailplanes.

The designation numbers of the 6-series airfoils contain
some useful information regarding their aerodynamic char-
acteristics. Take for example the NACA 65, -415. The first
digit denotes the 6-series. The next digit indicates the lo-
cation (in tenths of a chord) of the lowest static pressure for
the basic symmetrical section at zero lift (5 — x4 = 0.50c).
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This is usually near the point of maximum airfoil thick-
ness. The subscript is half the width of the laminar bucket
(2 — Ac) = 0.4). The first digit following the hyphen de-
fines the design lift coefficient (4 — C,, = 0.4) and the final
two digits provide the airfoil thickness (15 — d = 0.15¢).
This numbering scheme allows the effects of various airfoil
design parameters to be examined using data from airfoil
catalogs such as [1].

The effects of varying the airfoil thickness are most ap-
parentin a symmetrical airfoil. The upperand lower surface
pressure distributions on a symmetrical airfoil at zero an-
gle of attack are identical. If the thickness is varied while
holding the basic form constant, the pressure distribution
varies in proportion to the thickness (Fig. 45). The location
of the point of minffhum pressure remains unchanged. The
most important effect of varying the thickness is observed
in the drag polar. Thick airfoils exhibit relatively wide, shal-
low laminar drag buckets. As the airfoil is made thinner,
the minimum drag coefficient is reduced, while the range
of ¢, for reduced drag — that is, the laminar drag bucket —
becomes narrower.

Figure 46 shows the variation in minimum drag and max-
imum lift coefficient directly as a function of airfoil thickness.
Steep pressure gradients observed over the aft portions of
the thicker airfoils increase the likelihood of boundary-layer
separation, particularly at high angles of attack. This is
why the maximum lift coefficient diminishes with increas-
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Fig. 47: Effect of location of point of maximum thickness on airfoil performance (from [1]).

ing airfoil thickness (Fig. 46). Below around 12% thickness
the maximum lift coefficient also decreases since the lead-
ing edge becomes sharper and the flow tends to separate
at this location. From a practical point of view, this phe-
nomenon places a lower limit on the thickness of airfoils
used in horizontal and vertical stabilizers.

As discussed, the chordwise location of the point of max-
imum thickness determines the location of the minimum
static pressure, and in turn influences the boundary-layer
transition point (Fig. 47). Typically, the point of maximum
thickness lies between 30% and 50% of the airfoil chord
(NACA 63, 64, and 65-series). If the point of maximum

35

thickness is shifted further aft (as with, for example, the
NACA 66-series), the adverse pressure gradient in the aft
portion of the airfoil becomes too steep, leading to prema-
ture separation.

Although the position of maximum thickness has little in-
fluence on the width of the laminar bucket, it has a consid-
erable effect on its depth. Shifting the position of maximum
thickness aft may however have a detrimental effect out-
side the laminar bucket due to increased adverse pressure
gradients and flow separation.

If the airfoil is cambered, the resulting asymmetry gives
rise to differences in pressure distribution over the upper
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Fig. 48: Effect of camber on drag polar [1].

and lower surface, even at zero angle of attack. On the
upper surface, the pressure shifts upward (in the —c, di-
rection) and on the lower surface, downward (in the +c,
direction). The effect is proportional to the maximum cam-
ber. Camber is usually introduced in the NACA 6-series
airfoils using a mean line that produces a uniform increase
in velocity distribution on the upper surface and a uniform
decrease on the lower surface (the “a = 1.0" mean line).
The velocity gradients, which are of primary importance
to the development of the boundary layer, do not change.
Consequently, although the center of the drag bucket shifts
to a new design lift coefficient, the width and depth of the
bucket remain essentially unchanged (Fig. 48). As the
maximum camber increases, the laminar bucket shifts in

Re=3"-10°

0.012  0.016
Cd

0.004 0.008

the direction of incréased lift coefficient. Unlike the airfoil
thickness and position of maximum thickness, the degree
of camber and the chordwise position of maximum cam-
ber have a very strong influence on the pitching moment.
Figure 49 shows an example of the increase in zero-lift
angle, zero-lift moment, and maximum lift coefficient with
increasing camber.

As the name suggests, a camber-changing flap has an
effect similar to that of airfoil camber (Fig. 49). Camber-
changing flaps allow the aerodynamic characteristics of
the airfoil to be changed in flight. Specifically, the lami-
nar bucket may be shifted as required by repositioning the
flaps. Since camber-changing flaps introduce camber at a
relatively aft location on the airfoil, they have an especially
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Fig. 51: Variation of maximum lift coefficient and minimum drag with Reynolds number.

strong effect on the zero-lift pitching moment (Fig. 50).

Reynolds number and surface quality

As discussed, Reynolds number and surface quality have
a considerable effect on the development of the bound-
ary layer. In practical terms, the effects are seen mainly
in the lift-curve slope, minimum drag, and maximum lift
coefficient. At Reynolds numbers typical of sailplanes,
airfoil performance generally diminishes with decreasing
Reynolds number. In particular, the increased tendency to
form laminar separation bubbles and the overall increase
in viscous losses leads to a reduction in the lift curve slope,
the maximum lift coefficient, and an increase in minimum
drag (Fig. 51).

The influence of surface quality is of particular interest
in view of the high likelihood of insect impact during flight
as well as the possibility of operating in rain {171, 197,
235]. In both cases the boundary layer becomes turbulent
near the airfoil leading edge. In turn, the minimum drag
coefficient increases, depending on airfoil thickness, to a
value ranging from 0.008 to 0.012. At higher lift coefficients,
additional drag penalties arise due to flow separation near
the trailing edge. An increase in surface roughness leads

" to greater energy losses in the boundary layer, leaving it
less able to overcome the adverse pressure gradients and
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remain attached in the aft portion of the airfoil.

Drag penalties due to insect contamination appear to be
less severe for thin airfoils with sharp leading edges than
for thick airfoils with large leading-edge radii.

Wing Planform and Lift Distribution
Elliptical wings

For the high aspect ratio wings typically found on
sailplanes, the chordwise pressure distribution at each
spanwise location depends only on the airfoil geometry
at that location and the corresponding effective angle of
attack. Planform andwist affect only the spanwise lift dis-
tribution. The lift distribution has an important effect on

o load assumptions for the structural analysis,

induced drag,

wing/fuselage and wing/empennage interference ef-
fects, and

stall characteristics

A special case in wing theory is the untwisted elliptical
planform wing. Prandtl’s lifting-line theory predicts that this
wing will generate an elliptical spanwise circulation and




