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Abstract. This paper illustrates the application of the Flight Path Reconstruction procedure to both simulated and real
data collected from a sailplane aircraft. In both cases a specific type of Sgma-Point Kalman Filter, known as the Un-
scented Kalman Filter (UKF), is employed to determine the biases associated to each accelerometer and gyro in the
Inertial Measurement Unit (IMU), together with high sampling rate trajectory reconstruction from low frequency sam-
pled GPSdata.
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1. Introduction

Currently, there has been much effort towards the use of efficient algorithms to determine aircraft control and stability
derivatives, not only from wind tunnel experiments or Computational Fluid Dynamics analysis, but also based on real data
collected by onboard instrumentation, during flight tests [Jategaonkar et al., 2004, Jategaonkar and Thielecke, 2002].

The problem of Flight Path Reconstruction (FPR) is the first step in the procedure of using flight tests data to obtain
information about the parameters of the aircraft model [Mulder et al., 1999]. Roughly, this reconstruction means the
estimation of aircraft trajectory, based on aircraft sensors data. This step is crucial and fundamental, because real sensors
do present bias and sensitivity mismatches that must be accounted for in the subsequent phases of the analysis. Estimated
values for bias and sensitivity terms can be obtained in the process of flight trajectory reconstruction.

The original work on Kalman filtering [Kalman, 1960] gave rise to a very popular approach: the Extended Kalman
Filter (EKF) [Haykin, 2001] that relies on linearization in order to propagate the state covariance matrix of the dynam-
ical system. In some cases this can lead to unbounded estimation error estimates. One such instance is observed when
the system is described by highly nonlinear equations as in the kinematic analysis of 6 degrees of freedom rigid bodies.
Among many alternatives to the EKF, one can highlight the so-called Sigma-Point Kalman Filter (SPKF) and deriva-
tives [van der Merwe et al., 2004] which are based on the propagation of the state covariance matrix using the ensemble
statistics generated by suitably chosen points — the sigma-points— around the estimated state in the state space.

This paper illustrates the application of the FPR procedure to both simulated and real data collected from a sailplane
aircraft. In both cases a specific type of SPKF, known as the Unscented Kalman Filter (UKF) [Julier and Uhlmann, 2004,
Julier et al., 1995], is employed to determine the biases associated to each accelerometer and gyro in the IMU, together
with high sampling rate trajectory reconstruction from low frequency sampled GPS ! data.

The paper is organized as follows. In Section 2, the problem of state vector recursive estimation is presented in this
general form. In Section 3, the UKF algorithm is presented, together with a smoothing algorithm employed to enhance
the state estimation by means of offline computations. The problem of FPR is cast in terms of nonlinear recursive state

1Global Posistioning System.
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vector estimation in Section 3.2. Simulation results are presented in Section 3.3 In Section 4, the algorithm is used in a
real case. The data was obtained from flight tests on a sailplane aircraft. Finally, the main paper conclusions are presented
in Section 5.

2. Problem Description

The state estimation problem for the continuous-time nonlinear dynamical system

{ X = fxe,up, wy),

Yt = h[x¢, 1], M)

where f[-] and h[-] are respectively the assumed known process and observation models, can be described as follows.
Suppose that the only known data are the initial conditions x(0) € R"™, the measurements y; € R and the control inputs
u; € RP, V¢t > 0. Process noise w; € R" and measurement noise r; € R™ are assumed white, Gaussian, zero-mean
and mutually independent with covariance matrices ) and R, respectively. It is desired to obtain an estimate for the
unobserved state vector x;, V¢ > 0.

3. The UKF Algorithm

Many difficulties associated to the EKF have been partially circumvented by the use of the UKF which is based
on the intuition that it should be easier to approximate a Gaussian distribution than an arbitrary nonlinear function
[Julier et al., 1995]. Instead of linearizing the model equations, this algorithm propagates a small representative group
of deterministically chosen points (actually vectors) named sigma points: X;, i = 0,1,...,2n,, where n, is the dimen-
sion of the augmented state vector — which by construction includes the mean and covariance information of the state
estimate at time k£ — 1, with ¢ = kT, where k denotes discrete time and T is the sampling period, in order to numeri-
cally calculate the prior state estimate X, and its covariance matrix Py, _, by their propagation through the discrete
counterpart of the nonlinear equations (1). Hence, the algorithm can be implemented as follows.

Firstly, an augmented state vector is composed by the concatenation of the original state, process and measurement
noise variables thus x¢ = [x}f w7 rf]", and x? € R" where n, = 2n + m. Consequently the covariance matrix of

the vector of estimation errors must refer to this augmented state vector and henceforth it will be refered to as P2 €
RZrHm)x(2ntm) ihat s

P 0 O
PP=|0 Q 0 |. (2)
0 0 R
The sigma points can be chosen as
X(i k—1]k—1 — §271|k71
X eip— = Xt [\/(”a + NP ]l (3)

X k11 = X 1jp—1 — [\/("a + A)Pg—l\k—l }

with associated weights given by

)
(2

wém) e n:{l)\
wéc) = na)“i‘A + 1- 0[2 + B (4)
w™ — o) = __1

i i 2(na+A)?

withi = 1,...,n, and [\/(-)]; is either the i th row or column of the matrix square-root [Julier and Uhlmann, 2004]. For
the sake of simplicity the following choices are made A = a?(k + n,) — n, = 0 [Julier and Uhlmann, 2004] a = 1,
k = 0and 8 = 2 [Haykin, 2001]. Choosing the sigma points as indicated in (3) guarantees exact matching of the first
three moments. The unscented Kalman filter equations can be expressed as [Julier and Uhlmann, 2004, Haykin, 2001]

(3 _ 20, (M) g x _ z w
Xplk—1 = D2imo Wi ;. klk—1> Where X7, = fl1x; k—1lk—1 Wh—1, &} k71|k71]

~ _ 2n, (m) _ x r
Yilk—1 = 2imo Wi Vi, klk—1, where Vi g1 = h[&] klk—1> i, k\kfl]

Pije1 = Ly wl™ [ ey = K w1 J[A7 gy — K ]

2, N N 5
Plgﬁc—l =i wz(C) Vi, k-1 = Vi, kie—1)[Vi, kie—1 — Vi, kje—1]" ©®)
2n, 5 N
P = 2% w}® [Xf,lk\k—1 = X, k- 1)Vi, kik—1 = Vi, kik-1]"
_ pe vy
L Ky = Pk\kfl |:Pk|k71j| )
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withi =0,...,2n, and where X", ,_, aregiven by (3) and A" = [(X)T (X™)* (X7)*]*. The set of equations (5)
forms the prediction or propagation step of the UKF that propagates the state estimate one step ahead using the process
model. In the case of a continuous-time dynamical system, the state estimate at ¢ = (k — 1)T's (represented by the sigma
points X;ﬁlukfl) can be used as initial conditions to numerically integrate equations (1) one step ahead. This way the
discrete form of the UKF algorithm can be readily used.

The updating or correction equations are

{ Xk = Xpj—1 + Ke[yr — bR p—1]]

6
Pyjk = Prp—1 — Kp P K} ©

For details on Kalman filtering in general, the reader is referred to [Maybeck, 1979, Crassidis and Junkis, 2004] and
for the UKF see [Julier and Uhlmann, 2004, Haykin, 2001] and references therein.

3.1 TheUKSAIgorithm

In the previous section the UKF was presented as a recursive algorithm that provides estimates of the state vector
Xy based on all past and present measurement vectors y 1, ys, . .., yx. In the case of offline estimation, such as the FPR
problem, the Unscented Kalman Smoother (UKS) [Haykin, 2001] may be employed to produce improved estimates (the
measurement noise effects are smoothed out further) by the use of future measurements y r+1,yx+2,---,yn, Where N
equals the total length of the flight test data. To achieve this goal, the UKS optimally combines the results of a foward
and a backward UKF. The former estimates mean and covariance (fczl ko P,gl ) given past and present data, and the latter

estimates (fc‘,gl ka1 P,‘g’ 1+1) given future data. The forward UKF is implemented exactly as shown by equations (5) and (6)
whereas the backward UKF can make use of the following backward counterpart continuous-time model before applying

the same algorithm:
X ¢ =—flx ¢, u ¢, w4
7
{ Yyt = h[x 41 4], @
where —t denotes time inversion of input and output data. The optimal way that the UKS combines the forward and

backward filter results in order to produce the smoothed mean and covariance (%}, P;) of the states is given by the
following equations

[Pp]' = [Plg|k]_1 + [PIE\kJrl]_l
X, =P [[P,f\k 71’22\1@ + [Plak+1]71&llz|k+1

@)

When it comes to online applications, the iterative Kalman filter may reduce the effect of observation equation nonlin-
earities (recall that the UKF is a kind of a second-order EKF in terms of accuracy), improving the current state estimate
by applying local iterations to repeatedly calculate x |, P, and K},.2 In the case of EKF, the iterative approach requires
the local linearization of the observation model in each iteration [Crassidis and Junkis, 2004]. Similarly, in the context of
the UKF, new sigma points (3) should be calculated at each iteration, an issue that will be treated in a future paper.

Besides reducing the effect of observation nonlinearities, given that slowly sampled observations — such as the ones
provided by some GPS receivers — can be used, the aforementioned approaches somewhat play the role of interpolators,
which helps to mitigate the abrupt artificial changes in the position variables that appear in the estimates.

3.2 FPR and the UKF algorithm

In the FPR problem, kinematic models are used to describe the temporal evolution of a six degrees of freedom rigid
body. These equations consists of three sets of nonlinear first-order ordinary differential equations (ODE) as follows. The
first set describe how the translational velocity components u, v and w, along the rigid body axes, evolves with time:

U=—-qw + rv — g sinf + A,
V=-ru + pw + g cosf sing + A, 9)
Ww=—-pv + qu + g cosf cosp + A..
The second set accounts for the rotational dynamics through the time histories of the Euler angles ¢, 6 and ¢ with respect
to the earth-fixed reference frame:
éz —p + g sing tan@ + r cos¢ tanf,
6= q cos¢ — r sing, (10)
¥ =gqsing sech + r cos¢d sech.

Finally, numerically integrating the following set of ODE together with Equations (9) and (10) the position of the aircraft’s
c.g. (zg, yg, H) relative to the earth-fixed reference may be determined:

2According to [Mulder et al., 1999] four to eight iterations are generally employed in FPR.
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TE u Waeg
ye | =L | v |+ | Wy |, (11)
H w Wy

where the orthogonal matrix L g relates the fixed-earth and rigid body reference frames

cosf costy sing sinf cosyp — cos¢ siny cos¢ sinf cosyp + sin¢ siny
Lpp = | cosf siny sin¢ sinf siny + cos¢ costy cos¢ sinf siny — sin¢g cosy |, (12)
—sinf sin ¢ cos @ cos ¢ cos@

and W, ., W,, and W account for the components of a generally assumed constant atmospheric wind vector along the
earth-fixed reference frame. At this point, it is important to emphasize that Equations (9), (10) and (11) form the nonlinear
kinematic process model of an airplane (or any rigid body) in state space, where the states x ; € R” are given by

xy=[uvw¢bzgyp H", (13)
and the aerodynamic forces and the angular rates play the role of inputs u ; € R® as

w =[Aem Aym Aem Pm Gm Tm) - (14)
where the subscript m identifies that the variable is measured by onboard intrumentation. The state space dynamical

model is completed by considering the observation equations whose measurement vector y ,, € R? can be compound by
the following variables

Yi = [(bm Hm wm VTAS,m Om Bm TEm YEm Hm]Ta (15)

with the Euler angles ¢, 61, and ¢, also generally given by the IMU, Vi ag m is the true airspeed measured directly by
means of an annemometer or a Pitot tube system, o, and /3., are respectively the attack and sideslip angles measured by
vanes, x g, and y g, are the geographical coordinates provided by GPS receivers and H refers to the altitude (or the z g
position coordinate in the fixed-earth frame) given by barometric sensors.

Thus the complete state space dynamical model of an aircraft used in FPR can be given by

—(gm —ADw + (rm —A)v—gsinf + (Aem —Au,) | [ wu ]
_(rm - AT)U + (pm - A;D)w + gCOSQSiHQb + (Ay,m - AAy) Wy
—(pm — Ap)v + (gm — Ag)u+ gcosfcosp+ (A, m —Ax,) Wy
(Pm — Ap) + (gm — Ay) sindptand + (rm — Ar) cos ptané We
X¢ = flxe, mpr,, Wer] = (gm — Ag)cosd — (rm — Ay) sing + | ws |, (16)
(gm — Ay) sin?sec? + (rm — A;)cos ¢psech Wy
Lgp 1’U,+VVIE Wy
[LeBlv + Wy Wyg
i [LEB]31U+WH | | WH |
Koo+ Afﬁ | [ Tém i
K90 + At9 ro
Ky + Ay T
Kyvu? 402 +w? + Ay, —_—
Vi = h[XTLS,I‘k] - K, arctan (£) + A, + Ta. , 17)
Kgarctan (ﬁ) + Ag TBm
KxECEE + AwE Tem,m
Kypye + AZ,IE "ye,m
L KyH + AH ] L TH.

where the measured inputs uy, (14) discounts the respective bias (indicated as A, u refers to all components of uy) in
equations (16) whereas all outputs y . (15) regards about it (A, y refers to all components of y ) in (17) besides related
scale factors (given by Ky, y substitutes all elements of the vector y ) and both process and measurement noise vectors,
wy, and rj,, are assumed additive.

And last but not least, since the UKF algorithm can be also readily used to jointly estimate system parameters, it
is easy to consider a parameter as a “virtual” state. Thus equations (16) can be extended so as to take into account
the bias and scale factor effects. In this paper only bias variables are jointly estimated. Although, at first sight, this
approach seems simplistic it was successfully employed in [Mulder et al., 1999, van der Merwe et al., 2004]. Moreover
too many parameters may lead to nonreconstructible componentes in the extended state vector. Therefore vector (13) can
be concatenated with 8, € R™¢
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0 = [AAz AAy AA: AP Aq A, A¢ Ay AUJ AVT A, Aﬁ AﬂvE AZ,IE AH]Ta (18)
so that x.,¢+ = [xF 6F]" and equations (16) can by extended by

. 1
0 = _;et + Wo i, (19)

where 7 is the correlation time that governs the temporal evolution of the parameters 8 according to a zero-mean stationary
first-order Markov process [Mulder et al., 1999]. Taking 7 to infinity, the parameter dynamics is modelled as a random
walk sthocastic process that is able to deal with non-zero mean and non-stationary behaviour of some IMU sensors for
instance [van der Merwe et al., 2004].

Often it is expected that the system parameters do not vary or, if they do, the variation is much slower than that of the
original system state. Then, in both cases, the parameter covariance matrix Q 9 € R™ *™® of the Gaussian, zero-mean and
white-noise random variables w4 accounts for the uncertainty in the estimated parameters and permit their variation with
time. ® Lower-bounding the parameter error covariance matrix Py by suitably setting a non-null ) 4 allows to emphasize
the most recent data y, preventing the algorithm from stalling.

3.3 Simulation Results

This section reports some tests conducted with simulated data obtained by the FDC toolbox [Rauw, 2005]. This
Simulink toolbox models a DHC-2 Beaver aircraft by coupling aerodymanic, atmospheric, gravity and propulsion engine
equations in a flat-earth nonlinear state space dynamic model. The states, inputs and outputs are given by equations (13),
(14) and (15) respectivelly.

The FPR problem discussed in Section 3.2 is treated here by investigating two types of trajectories. Both very rapid
and smoother maneuvers are shown in Fig. 1. It is important to note that the very rapid maneuver shown in Figure 1.a
is likely to be unfeasible for the appointed simulation time span of 60s, due to aircraft physical constraints. However,
this data set was important to reveal best practices in conducting flight tests, particularly related to sensors parameters
estimation.

(@) (b)

1200
3000 3500

2000 2500

600

1500
s00 1000
Ve -1000 500 X

Figure 1. Simulated (—) and reconstructed (. . .) Beaver trajectories: (a) the very rapid one was obtained integrating model
equations at 6¢ = 0.005s during 60s whereas (b) for the smoother it was used ¢ = 0.01s during 300s. In both cases the
reconstruction considered 7's = 0.10s for all inputs and outputs, except for the GPS measurements (T'¢ps = 1.0s).

Indeed, as can be inferred from the values in Tables 1 and 2, if the initial goal is to estimate bias from the IMU sensors,
one should employ data sets corresponding to smooth maneuvers. This seems to be consistent with the fact that steady
state flight conditions are more adequate to reveal the effect of accelerometers and gyro biases, because in those cases
these mismatches rapidly lead to large errors that can be detected easier than those observed in very rapid and oscillating
maneuvers.

Despite this, the state estimation errors for the smooth maneuver case reveal that the algorithm is relatively robust to
noise in the IMU sensors. The state estimation errors are small, as shown in Table 1 (below 10% even in the worst case)
for noise levels ranging from 1% to 25% in the signals provided by the IMU and by the outputs (15).

3The greater is the trace of g, the quicker are the permited variations in . Different approaches, namely, fixed or time-varying (), can be used to
tune UKF convergence rate and parameters tracking performance [Haykin, 2001]. For the sake of simplicity, in the present work @ will be taken as a
constant matrix.
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Table 1. Root mean square (RMS) and normalized RMS (in italic) errors of estimated states for Beaver simulated data
(both smooth and rapid trajectories) regarding different signal-to-noise ratios (SNR) in inputs and outputs.

Traj./SNR w(m/s) wv(m/s) w(m/s) ¢ (rad) 0 (rad) 1 (rad) zg(m) ygr(m) H (m)
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Smooth 1% 0.0015  0.0027 0.0004 0.0001 0.0001 0.1404 3.4426  3.8446 0.1405
0.0034 0.0711 0.0059 0.0810 0.0258 4.4705 0.1081 0.0844 0.0068

Rapid 1% 1.7514  1.2325 3.0175 0.0096 0.0016  1.4469 12.6520 20.3046  24.8081
0.9407 22962 25933 05378 02293 46.1579 13721 2.0470 0.4264

Smooth 10%  0.0088  0.0164 0.0034 0.0008 0.0003 0.2811 12.6279 13.1645 0.6067
0.0201 04364  0.0499 04826 0.1949 89474 03966 0.2890 0.0295

Rapid 10% 3.3807  2.5387 47160 0.0159 0.0152 1.3823 50.6492 67.0234 184.6727
18159 47297  4.0530 0.8902 2.1603 44.0972 54928 6.7568 3.1743

Smooth 25%  0.0183  0.0380 0.0082 0.0019 0.0008 0.2017 16.0906 17.6577 0.9390
0.0418 1.0080 0.1195 1.1033 0.4581 6.4217 05053 0.3877 0.0456

Rapid 25% 11.3401 25624 10.4396 0.0334 0.0396 1.4381 37.6388 49.0660 207.5675
6.0910 47739 89721 1.8631 56101 45.8782 4.0818 4.9465 3.5679

Table 2. Normalized steady-state errors of estimated IMU bias for Beaver simulated data (smooth case only) regarding
different noise levels in model inputs and outputs. The following choices were made for bias values: A ,, = 0.01g,
A,, = —0.059, A, = —0.029,A, =0.5°/s, A; = —0.5°/sand A, = 0.5°/s.

SNR  Aq, () Aa, (0) Aa. (B) Ay (0) A, () A (%)
1% 1.0896 -0.1798 3.1236 -0.0016 0.0129 0.1030
10%  1.1864 27973  3.9169 0.2442 -0.1767 -3.4034
25%  0.9622 -3.8705  2.0931 -0.7857 0.0858  4.6997

For the rapid maneuver, the state estimation error worst case was observed for ¢). This seems to be due to the artificial
discontinuity introduced when the yaw angle traverses the 27 boundary. This is another strong indication that one should
employ quaternions [Stevens and Lewis, 1992], instead of Euler angles, to estimate rigid body attitude.

The results obtained for sensors biases estimation are shown in Table 2. No convergence was obtained for the rapid
maneuver case. Two different approaches were used to model the parameters dynamics, as indicated in Equation (19):
Markovian (0 < 7 < oo) and random-walk (7 — o0) strategies. Only results for the latter approach are presented,
although it is important to remark that similar results were observed in both cases.

4. Experimental Data— Sailplane Air cr aft

In order to verify the efficiency of the UKF algorithm in a real case, the procedure described in Section 3. was
employed to estimate states and parameters from data collected in flight tests conducted on a SZD 50-3 Puchacz sailplane
[PZL-Bielsko, 2005] (see Figure 2), piloted by one of the authors. This aircraft is manufactured in fiberglass, with 16.67m
wingspan and empty weight between 360Kg and 370Kg. The flight tests data were Kindly provided by the Centro de
Estudos Aeronduticos — CEA/UFMG [Centro de Estudos Aeronduticos — CEA, 2005].

The Flight Data Acquisition System — FDAS; i.e. the onboard instrumentation; was developed in the CEA/UFMG
and comprises an airdata probe capable of measuring static and dynamic pressures, and angles of attack and sideslip;
and accompanying sensors to measure outside air temperature, flight controls positions, and aircraft accelerations using
MEMS* accelerometers. The angular velocities and translational accelerations were provided by a MicroStrain 3DM-
GX1 IMU, which was connected to a portable computer. The inertial data collected using the commercial IMU was
properly synchronized with the rest of the acquired data collected using the FDAS-CEA system by means of the MEMS
accelerometers signals.

The maneuvers were planned to properly excite the aircraft longitudinal (phugoid and short period) and lateral-
directional modes. Time series for the estimated attitude and translational velocities are shown in Figure 3.

In Table 3 real results obtained from the Puchacz sailplane aircraft flight tests data are presented. The percentual errors
in the translational velocities were obtained considering that the variables Vr, a and /3 were perfectly measured, i.e. the
airdata probe was considered our calibration standard. In the same way, the attitude information, that was provided by the
commercial IMU, and the low frequency GPS data were assumed to be perfect measurements.

The results reveal that the UKS procedure can be effectively used to improve the estimation of high frequency sampled
data from low frequency sampled acquired data (GPS measurements), which seems to be consistent with the discussion
in Section 3.1.

4Microelectromechanical devices.
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Based on the apparently small values observed for the state estimation errors, it seems that the results obtained for
sensor biases estimation, shown in Figure 4, could be regarded as good approximations of the real sensors parameters.
However, it is important to emphasize that it was not possible to validate this conclusion once there was no independent
account for the sensor biases.
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Figure 2. (a) SZD 50-3 Puchacz sailplane. (b) Real (—) and reconstructed (. ..) aircraft trajectories. The flight path
reconstruction considered 7' = 0.10s for all inputs and outputs, except for the GPS measurements (T'¢ps = 1.0s).
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Figure 3. Real (—) and UKF joint estimated (---) velocity componentes (u, v € w) and Euler angles (¢, 8 e 1) of SZD
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Figure 4. UKF joint estimated (-) IMU sensor biases of SZD 50-3 Puchacz sailplane.
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Table 3. Root mean square (RMS) and normalized RMS (in italic) errors of estimated states for Puchacz data for UKF
and UKS algorithms.

Traj./SNR  u(m/s) wv(m/s) w(m/s) ¢ (rad) 6 (rad) o (rad) zg(m) yg(@m) H(m)

(%) (%) (%0) (%) (%) (%0) (%0) (%) (%)

UKF 03685 02758  0.1897 0.0224 0.0274 02622 10.5580 11.8034 1.0979
10203 26481 17978 44328 53115 41836 05126 03389 0.0389

UKS 02136 01412 01079 0.0149 00111 00964 25140 33916 0.4935

05914  1.3548 10228 29335 21569 3.0689 0.1220 0.0973 0.0174

5. Concluding Remarks

In this paper a Kalman Filter like algorithm — known as the Unscented Kalman Filter — UKF was presented as a viable
alternative to perform Flight Path Reconstruction without relying on kinematic equations linearization.

Together with the aforementioned algorithm, a derivated smoothing procedure was also presented. This procedure
leads to the Unscented Kalman Smoother (Section 3.1), which can be used to enhance the quality of the estimation by
combining future and past data in offline calculations to generate smoother high frequency sampled trajectory reconstruc-
tion from low frequency GPS data.

As discussed in Section 3.3, the flight tests should be conducted so that slowling varying or even static measurements
from the onboard sensors are obtained, in order to facilitate the estimation of sensors biases.

The UKF algorithm convergence is greatly affected by the initial process and measurement noise covariance matrices.
The initial covariance estimate can be obtained from instrumentation technical specfications related to overall accuracy
and precision. It is important to note that there exist the possibility of estimating the noise statistics altogether, which is
called adaptive filtering. A deeper analysis in this case is under way.
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