Considerações sobre a utilização do método de elementos finitos para o cálculo do trem de pouso em material composto da aeronave CEA-309 MEHARI.

Luiz Augusto Tavares de Vargas Paulo Henriques Iscold Andrade de Oliveira Rogério Pinto Ribeiro

Centro de Estudos Aeronáuticos da Escola de Engenharia da Universidade Federal de Minas Gerais - CEA/EEUFMG

Copyright © 2004 Society of Automotive Engineers, Inc

RESUMO

Apresenta-se uma metodologia de cálculo utilizada para o projeto do trem de pouso da aeronave CEA-309 Mehari, baseada na utilização do método de elementos desenvolvido um programa para a finitos. Foi automatização dos procedimentos de cálculo, através da geração parametrizada da geometria, malha, condições de contorno e solução. Com este programa, para o cálculo estrutural de uma dada geometria, basta que sejam fornecidas algumas dimensões que caracterizam a geometria do trem de pouso. Algumas peculiaridades referentes à utilização do método de elementos finitos em material composto, como a orientação dos elementos e as não linearidades envolvidas são analisadas e discutidas. Este procedimento possibilitou uma redução no trabalho de projeto, viabilizando alterações rápidas da geometria e análises subseqüentes. Uma geometria final é apresentada e comparada com critérios de absorção de energia definidos a partir dos requisitos apresentados pelo FAR Part23 [4].

INTRODUÇÃO

O trem de pouso da aeronave CEA-309 Mehari é do tipo convencional (Figura 1).

Figura 1 – Aeronave CEA-309 Merahi

O trem de pouso principal é constituído por uma lâmina fabricada em material composto (fibra de vidro unidirecional em matriz epoxi), revestida com tecido bidirecional (fibra de vidro em matriz epóxi), responsável por aumentar a rigidez torcional da lâmina.

As dimensões básicas de altura e bitola e do trem de pouso são definidas em seu projeto básico [1].

Objetivo deste trabalho é a determinação das outras dimensões necessárias para a construção do trem de pouso principal (Figura 2): i) largura na raiz (b1); ii) largura na ponta (b2); iii) espessura na raiz (t1); iv) espessura na ponta (t2) e v) espessura da camada de tecido externa (t).

Figura 2 - Variáveis do programa

Como não existe solução analítica para a determinação das cinco dimensões não conhecidas, é desejável a construção de um modelo parametrizado, o qual permite analises rápidas de várias configurações, bastando que sejam informadas as dimensões b1, b2, t1, t2 e t.

MODELO PARAMETRIZADO

De forma a gerar um modelo parametrizado, foi criada uma rotina interna para uma plataforma comercial de elementos finitos capaz de criar o modelo, gerar a malha, aplicar as condições de contorno e apresentar os resultados de uma configuração escolhida, tendo como entrada as dimensões não conhecidas do trem de pouso.

A estrutura lógica da rotina implementada é apresentada na Figura 3.

Figura 3 - Estrutura do programa construído

CONDIÇÕES DE CONTORNO

CARREGAMENTO

As cargas a serem aplicadas foram calculadas por Iscold [1], segundo a regulamentação apresentada pelo FAR (Federal Aviation Regulations) - Part 23 [4].

Os fatores de segurança e de qualidade do material adotados, ainda em concordância com o regulamento FAR-Part23 [4] foram: i) 1,5 como fator de segurança e ii) 1,15 como fator de qualidade de material (material composto).

	Pouso nivelado	Pouso de três pontos	Pouso em uma roda	Pouso com carga lateral
Carga vertical (N)	13269	12178	13269	8823
carga horizontal p/ trás (N)	3317	0	3317	0
carga transversal (lateral) (N)	0	0	0	6635

Tabela 1 - Cargas atuantes no trem de pouso

O fator de carga no solo, é determinado através de uma procedimento iterativo que depende da rigidez do trem de pouso e das características de pouso. Um detalhamento deste procedimento foge ao escopo deste artigo. Para este trabalho será considerado fator de carga no solo igual a 3.

As cargas finais a serem aplicadas no trem de pouso são apresentadas na Tabela 1.

A Figura 4 apresenta o modelamento para a aplicação das cargas. Note que as cargas são aplicadas nos pontos de contato entre os pneumáticos e o solo e são transferidas à estrutural principal do trem de pouso através de elementos rígidos.

Figura 4 - Ponto de aplicação da carga

CONDIÇÕES DE APOIO

Foram analisadas, a princípio, duas condições de apoio diferentes: lâmina engastada e lâmina bi-apoiada, como pode ser observado na Figura 5.

Figura 5 Comparação entre as condições de apoio adotadas

A Tabela 2 apresenta uma comparação dos resultados de deslocamento da ponta da lâmina do trem de pouso obtidos com as duas condições de apoio. Pode-se notar que com a condição bi-apoiada, o deslocamento observado é 86% maior que aquele obtido com a condição engastada. Sendo a absorção de energia proporcional ao deslocamento do trem de pouso, pode-se admitir que a condição de apoio ideal para este projeto será a bi-apoiada.

Tabela 2 Variação nos resultados com o tipo de fixação

	Deslocamento máximo (mm)
Engastado	150
Bi-Apoiado	279

ELEMENTOS

LÂMINA - Para a representação da lâmina adotou-se elementos cúbicos com 8 nós (um nó em cada vértice) conforme mostrado na Figura 6. Este componente requer uma modelagem tridimensional devido à esperada variação de tensão ao longo da sua espessura, o que não recomenda a utilização de elementos planos.

Figura 6 - Elemento cúbico [5]

REVESTIMENTO - Como a espessura do revestimento deve ser pequena (< 2mm), será utilizado, para a sua representação, um elemento plano, com 4 nós, conforme apresentado na Figura 7. Com este elemento é necessário pré-definir um estado para as variações de tensão ou deformação ao longo da sua espessura. Neste trabalho será considerado, para estes elementos, um estado plano de tensões, ou seja, a tensão ao longo da sua espessura será considerada constante.

Figura 7 - Elemento de casca [5]

COMPATIBILIDADE DOS ELEMENTOS (MALHA SOBRE MALHA) – Como em uma mesma geometria são aplicadas duas malhas distintas (uma representando a lâmina e outra representando o revestimento), faz-se necessário observar a compatibilidade de deslocamentos entre os elementos.

De acordo como a formulação dos elementos utilizados, pode-se garantir esta compatibilidade simplesmente pelo fato de se ter coincidência entre os nós dos elementos tridimensionais e dos elementos bidimensionais (Figura 8). Para isto deve-se ter malhas com mesma discretização idêntica para os dois tipos de elemento.

Figura 8 - Malha sobre malha

ORIENTAÇÃO DOS ELEMENTOS – Como as fibras unidirecionais estão dispostas ao longo do comprimento da lâmina, acompanhando suas curvaturas, e o tecido que reveste o trem de pouso está a 45º em relação às fibras unidirecionais, é necessária a orientação dos elementos através de sistemas de coordenadas locais. Devese notar também que por se tratar de materiais compostos as anisotropias devem ser consideradas.

Pode-se observar pelas Figura 9 e Figura 10, a diferença entre os sistemas de coordenadas dos elementos quando alinhados ou não com a direção das fibras.

A Tabela 3 apresenta, resultados de deslocamento da ponta da lâmina do trem de pouso quando se utiliza ou não sistemas de coordenadas locais para os elementos. A diferença entre os resultados pode chegar a quase 300%, comprovando a importância de se orientar as propriedades mecânicas dos materiais com as correspondentes direções da geometria.

Figura 10 - Elementos sem orientação

Tabela 3 – Variação dos resultados com o tipo de orientação dos elementos

	Deslocamento máximo (mm)
Com orientação	21
Sem orientação	65

PROPRIEDADES DOS MATERIAIS

As fibras de vidro, unidirecionais ou bidirecionais, em matriz epóxi, podem ser consideradas como materiais ortotrópicos. As características mecânicas adotadas foram obtidas na literatura [3], e são apresentadas na Tabela 4.

Tabela 4 - Propriedades dos materiais

	unidirecional	bidirecional	
E _x (GPa)	8.6	29.7	
E _Y (GPa)	39	29.7	
E _z (GPa)	8.6	8.6	
PR _{XY}	0.06	0.06	
PR _{YZ}	0.06	0.17	
PR _{xz}	0.28	0.17	
G _{XY} (GPa)	6	8	
Gyz (GPa)	6	5.3	
G _{xz} (GPa)	3.8	5.3	

Na Tabela 4, E, PR, G, representam, respectivamente, o módulo de elasticidade, o coeficiente de Poison, e o módulo de cisalhamento, nas direções indicadas.

NÃO LINEARIDADE

Devido aos grandes deslocamentos envolvidos, foi necessária a utilização de um método não linear para a solução deste problema.

Para ilustrar a necessidade de solução não linear neste problema, foi obtida uma solução linear do mesmo modelo estando os resultados apresentados na Tabela 5. Nota-se que, a diferença observada no resultado de deslocamento é próxima à 100%, comprovando a importante influência da solução não linear do problema. Tabela 5 - Variação de resultados de acordo com o tipo de modelo

Modelo	Deslocamento (mm)	
Linear	147	
Não linear	279	

INFLUÊNCIA DA DISCRETIZAÇÃO E DO TIPO DE SOLUÇÃO NO TEMPO DE PROCESSAMENTO

A fim de obter uma malha que garanta resultados precisos (convergência dos resultados), foram realizados testes com diversos tamanhos de elementos. A Tabela 6 e a Figura 11 apresentam uma comparação entre os resultados obtidos com um processador Athlon 1.5 GHz com 512Mb de memória RAM operando em ambiente Windows XP.

Tabela 6- Influencia do tamanho dos elementos e tipo de análise no
tempo de processamento e resultados

tipo	tamanho do elemento (mm)	tempo de processamen to	deslocamento
	50	7 s	291
linear	25	13 s	292
	15	23 s	292
	10	42 s	292
não linear	50	2 m e 20 s	677
	25	7 m 45 s	703
	15	23 m 30s	703

Figura 11 Influencia do tamanho dos elementos e tipo de análise no tempo de processamento.

Para este trabalho, adotaram-se elementos com tamanho máximo de 25 mm, assegurando, de acordo com a Tabela 6, boa precisão dos resultados sem, no entanto, aumentar demasiadamente o tempo de processamento.

ABSORÇÃO DE ENERGIA

Segundo Pazmany [2], o deslocamento da ponta da lâmina necessário para que o trem de pouso seja capaz de absorver a energia associada ao pouso pode ser obtida, de forma simplificada, através da seguinte equação:

$$ds = 0.3 \times \frac{\sqrt{\frac{W}{S}} - dt \times \left[(Kt \times Nz) + (\frac{L}{W} - 1) \right]}{(Ks \times Nz) + (\frac{L}{W} - 1)}$$

onde, W denota o peso da aeronave em lbf, S a área alar em ft², dt a deformação do pneu [2] em ft, Kt a eficiência de absorção de energia do pneu, Nz o fator de carga no solo durante a condição em estudo, L a sustentação da aeronave na condição em estudo em lbf e Ks a eficiência de absorção de energia do trem de pouso.

Para a aeronave CEA-309, considerando peso de projeto de 1152lbf e fator de carga no solo máximo igual a 3, tem-se:

$$ds = 0.3 \times \frac{\sqrt{\frac{1152,45}{72,3334}} - 0,1750 \times [(0,42 \times 3) + (\frac{768,3031}{1152,45} - 1)]}{(0,5 \times 3) + (\frac{768,3031}{1152,45} - 1)} = 0,8874 \ ft = 270,5mm$$

ou seja, para que a energia de pouso com fator de carga no solo igual a 3 seja absorvida, a ponta da lâmina do trem de pouso deve ter um deslocamento aproximado de 270 mm.

CONFIGURAÇÃO ADOTADA

Utilizando a metodologia apresentada neste trabalho determinou-se a configuração para a construção do protótipo do trem de pouso da aeronave CEA-309 MEHARI, conforme apresentado na Tabela 7.

Tabela 7	Configurac	าลึก	adotada
I unociu /	Company		uuouuu

Variável	Valor (mm)
b1	120
b2	80
t1	32
t2	24
Т	0,73

A configuração mais favorável é aquela que possui altos valores de deslocamentos (alta absorção de energia e baixo fator de carga na fuselagem), porém com baixos valores de tensão (maior confiabilidade estrutural). No entanto é conveniente lembrar que tanto o valor do deslocamento, quanto os valores de tensão aumentam com a diminuição das dimensões geométricas, ou seja, caso seja necessário aumentar o deslocamento máximo da ponta da lâmina do trem de pouso (a fim de melhorar a absorção de energia), aumenta-se conseqüentemente também os valores de tensão.

DESLOCAMENTOS

Pode-se observar pela Tabela 8, que, segundo o M.E.F, a ponta da lâmina tem um deslocamento 3,1% superior do que a necessária para absorver a energia do pouso da aeronave, o que atende aos requisitos descritos segundo Pazmany[2].

Tabela 8	Des	locamento

Deslocamento em Y	Deslocamento necessária	
(resultado do M.E.F. , mm)	(Segundo Pazmany, mm)	
279	270,5	

Assim, pode-se se assegurar que a configuração adotada atende plenamente os requisitos referentes a absorção de energia impostos pelo FAR Part-23 [4].

Figura 12 - Níveis de deslocamentos da roda

A Figura 12, mostra os diferentes níveis de deslocamentos a qual a ponta da lâmina do trem de pouso da aeronave poderá estar submetida. É importante notar que o deslocamento máximo é suficiente para garantir uma folga de hélice em relação ao solo, garantindo assim sua integridade mesmo em situações críticas para o trem de pouso.

TENSÕES

Além de ser capaz de absorver a energia associada ao pouso da aeronave, o trem de pouso deve apresentar também resistência suficiente para evitar falhas mecânicas. Para esta análise foi avaliado o nível de tensão a qual a lâmina de fibra de vidro estará submetida, utilizando tensão equivalente de von-Mises. Os resultados estão mostrados na Figura 13 e na Figura 14, e resumidas na 0.

Tabela 9 Tensões atuantes para várias condições de pouso

	Resultados para Nz = 3 e elemento de 25 mm		
	Tensão no roving (Mpa)Tensão no tecid (Mpa)		
vôo nivelado	689,3	272,2	
cargas laterais	513,0	237,2	

É importante notar que apesar dos níveis de tensão estarem muito abaixo dos limites de ruptura do material (1000 Mpa para o roving e 360 Mpa para o tecido), não se pode diminuir as dimensões do trem de pouso, pois isso aumentaria os deslocamentos ao qual ele estaria submetido (diminui a rigidez), tornado inviável do ponto de vista de projeto, pois a hélice tocaria o solo.

CONCLUSÕES

O projeto de um trem de pouso que atenda simultaneamente requisitos de rigidez e resistência, só é com a aplicação de uma metodologia de cálculo como a sugerida neste trabalho.

As rotinas de automatização do cálculo através da geração parametrizada do modelo se mostraram eficientes, permitindo a agilização da análise de diferentes configurações.

Como ficou ilustrado neste trabalho, a não observância de técnicas de utilização do MEF, como: forma

de orientação dos elementos, tipo de solução e formas de aplicação das condições de contorno, pode causar grandes erros, comprometendo a análise em execução.

REFERÊNCIAS BIBLIOGRÁFICAS

- Iscold, P. H. A. O.; Projeto da aeronave CEA-309 Mehari; Centro de Estudos Aeronáuticos da Escola de Engenharia da Universidade Federal de Minas Gerais -CEA/EEUFMG;2001.
- [2] Pazmany, L.; Landing Gear Design for Light Aircraft volume 1; 1986.
- [3] Daniel, I.M.; Engineering Mechanics of Composite Materials; Oxford University Press; 1994.
- [4] FEDERAL AVIATION ADMINISTRATION; Federal Aviation Regulations-Part 23, 1999.
- [5] Ansys Inc., Manual on-line do software ANSYS 5.7.

Figura 13 Tensão no roving e no tecido - Pouso em atitude de vôo nivelado

Figura 14 Tensão no roving e no tecido- Pouso com cargas laterais