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ABSTRACT 

In this work, sailplane symmetrical motion equations 
including pitch motion controlled by elevator angle are 
presented. The following effects are especially taken into 
consideration: i) tail damping due to pitch motion; ii) air 
density variation according to altitude; iii) presence of 
vertical and horizontal atmospheric air motions, and iv) 
non-linearity of  LC α×  curve near stall angle. The 
mathematical modeling includes the construction of an 
objective function for competition flight optimization. 
Making use of the concept of state variables, the minimum 
time trajectory problem is formulated as an optimal control 
problem with state constraints. Using simplified control 
laws and a mathematical programming algorithm, sub-
optimal trajectories are obtained for the sailplane PIK-20B. 

INTRODUCTION 

The classical optimization problem in sailplane 
competitions (Weinholtz, 1967, Reichmann, 1978) consists 
in minimizing time spent in sailplane cruising from one 
thermal to another and in the rise within the second thermal 
until it recovers its initial altitude (Figure 1). 

 
Figure 1 – The MacCready Problem 

The MacCready solution, although very efficient in 
practical conditions, is based on equilibrium analysis and 
does not take into account the transient dynamics of the 
problem. Recently, other authors have studied this problem 
from a dynamic point of view as an optimal control 
problem (Metzger e Hendrick, 1974; Pierson e De Jong, 
1978; Dickmanns, 1981; De Jong, 1981; Mozdyniewicz, 
1981; Kawabe e Goto, 1994; Vanderbei, 2000). However, 
all these studies are based on simplified dynamic models, 
without taking into account the pitch motion, adopting as 
the control variable the lift coefficient of the sailplane and 
not the elevator angle which would be most natural from a 
practical point of view.  

This present approach includes pitch motion and adopts 
the elevator angle as the control variable, taking into 
account: i) air density variation with altitude; ii) presence of 
atmospheric air motion and iii) non-linear behavior of the 
lift near to the stall. 

Limitations in flight altitude and in velocity are modeled 
as state constraints, which are later incorporated in the 
objective function through penalties. 

Preliminary results are obtained using the sailplane PIK-
20B data. 

MOTION EQUATIONS  

The force diagram used to determine motion equations 
for a sailplane in symmetrical flight, including pitch 
motion, is presented in Figure 2. 

The main considerations for the construction of this 
diagram are:  

1) the contribution of drag forces for pitch motion is 
very small;  

2) while lift forces for the wing and fuselage are 
grouped (L), horizontal tail lift is considered 
separately (LT); 

 



 

 

 
Figure 2 – Force Diagram 

 

3) the effect of the horizontal tail aerodynamic 
moment around its aerodynamic center on sailplane 
pitch motion is negligible. Therefore, the 
aerodynamic moment (M) refers only to the 
aerodynamic moment of the wing-fuselage group 
around its aerodynamic center. 

Notice that the diagram includes the presence of vertical 
and horizontal atmospheric air motions (aX e aY), which 
may vary in intensity throughout space. 

An inertial system is adopted as reference and its origin 
is located exactly in the initial position (t=0) of the 
sailplane gravity center, with its x axis positioned in the 
local horizontal, pointed towards the initial direction of 
motion and its y axis positioned on the local vertical, 
pointed downwards. 

Therefore, VX represents the horizontal component of 
the sailplane inertial velocity and VY its vertical component 
(descending velocity). 

Applying Newton’s Second Law, the following 
equations are obtained for the inertial sailplane 
accelerations: 

horizontal direction: 

 sen cos senTmx L D Lη η γ= − +��  (1) 

vertical direction: 

 cos sen cosTmy L D L Wη η γ= − − + +��  (2) 

pitch motion: 

 cos cosA T T TJ M L x L xθ α α= + ⋅ − ⋅��  (3) 

In the above equations, m and J denote, respectively, the 
sailplane mass and its inertial moment around the 
transversal axis. The right hand side of the equations are 
calculated taking into account the following considerations. 

The aircraft aerodynamic velocity modulus can be 
written as:  

 ( ) ( )2 2
R x X x YV V a V a= + + +  (4) 

where the horizontal atmospheric air velocity (aX) is 
positive when the wind is frontal in relation to the initial 
aircraft position and the vertical atmospheric air velocity 
(aY) is positive for ascending atmospheric air motions. 
Therefore, the angle between the aircraft aerodynamic 
velocity and the horizontal (η) can be written as: 

 
( )
( )

arctg y Y

x X

V a
V a

η

 +
 =
 + 

 (5) 

The attack angle for the wing-fuselage, related to its 
non-lift line is:  

 α η θ= +  (6) 

where θ  denotes the angle between the wing-fuselage 
non-lift line and the horizontal. 

In order to calculate the attack angle on the horizontal 
tail (Figure 3) two parts are taken into account: the first as a 
consequence of the sailplane attack angle, including the 
down-wash effect produced by the wing and the second as a 
consequence of the sailplane pitch motion.  

 
Figure 3 –Velocity components on horizontal tail  



 

 

The horizontal tail aerodynamic velocity modulus is 
obtained as: 

 ( ) ( )2 2
RT TT NTV V V= +  (7) 

where VNT and VTT denote the normal and tangential  
components of horizontal tail aerodynamic velocity related 
to the wing-fuselage non-lift line, calculated as:  

 ( ) ( )cos senTT X X Y YV V a V aθ θ= + − +  (8) 

 
( ) ( )sen cosNT X X Y YV V a V a

u w

θ θ= + − +

+ −
 (9) 

with the down-wash (w) and the pitch (u) effects 
included. 

The velocity (u) due to pitch motion is obtained as: 

 Tu xθ= ⋅  (10) 

where xT denotes the distance between the horizontal 
tail and wing-fuselage aerodynamic centers, measured 
parallel to the wing-fuselage non-lift line. 

The velocity (w) due to the down-wash effect is 
obtained as: 

 Rw Vε≅  (11) 

where 

 
0̀

d
d
ε

ε α

α

≅  (12) 

denotes the down-wash angle. 

The horizontal tail attack angle related to the wing-
fuselage non-lift line is:  

 arctg NT
T

TT

V
V

α

 =   
 (13) 

In order to calculate the horizontal tail attack angle 
related to its non-lift line, the angle between the horizontal 
tail and wing-fuselage non-lift lines (iT) must be added to 
the previous value, as follows: 

 0
T T Tiα α= +  (14) 

The wing-fuselage lift, drag and aerodynamic moment 
can be written as: 

 21
2 ( ) ( )L RL y SC Vρ α=  (15) 

 21
2 ( ) ( )D RD y SC Vρ α=  (16) 

 21
2 ( ) ( )M RM y ScC Vρ α=  (17) 

where S denotes the wing area, c denotes the wing 
mean aerodynamic chord and CL, CD, CM denote the 
respective coefficients.  

The horizontal tail lift can be written as:  

 21
2 ( ) ( , )T T LT T RTL y S C Vρ α δ=  (18) 

where ST denotes the horizontal tail area, δ the elevator 
angle and CLT the respective coefficient.  

STATE EQUATIONS  

Taking all the previous considerations into account, a 
set of state variables can be defined as:  
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In terms of state variables, the sailplane symmetrical 
motion equations can be written as follows: 
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where: 

 21
22 ( ) ( )L RL x SC Vρ α=   

 21
22 ( ) ( )D RD x SC Vρ α=   

 21
22 ( ) ( )M RM x ScC Vρ α=   

 21
22 ( ) ( , )T T LT T RTL x S C Vρ α δ=  

 ( ) ( )2 2
RT TT NTV V V= +  

 3T xγ α= −  

 tan NT
T

TT

V
V

α

 =   
 

 ( ) ( )4 3 5 3cosTT X YV x a x x a sen x= + − +  

( ) ( )4 3 5 3cosNT X YV x a sen x x a x u w= + + + + −  
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Notice that, in the above state model, the control 
variable is the elevator angle (δ).  

The use of the elevator angle as a control variable is 
extremely realistic since, indeed, the pilot controls the flight 
through variations in the stick position, i.e. in the elevator 
angle.  

OPTIMIZATION PROBLEM FORMULATION 

The final goal of the present study is to make use of the 
previous dynamic model in order to solve the MacCready 
problem (Figure 1), having as control variable the elevator 
angle, as the following optimal control problem: 
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subject to: 
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where VNE denotes the velocity never to be exceeded, 
an sailplane operational restriction, h denotes the initial 
height of the trajectory. The second integral in the equation 
(21) represents the time in the rise within the thermal. The 
states  ( )x δ  and ( )V δ  must be calculated by numerical 
integration of state equations. It is also assumed that the 
limit load factors will never be reached.  

In this paper, in order to simplify the problem and 
enable a preliminary analysis, the problem was solved only 
regarding the time spent between thermals, i.e. substituting  
the problem(21), the following optimal control problem 
must be solved: 

 
0
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ft

dt
δ
∫  (22) 

subject to: 
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Notice that the constraint on height was removed in 
problem(22). For the moment, it is tacitly admitted that the 
sailplane initial height is greater than the maximum loss of 
height during the trajectory. 

PENALIZED PROBLEM  

Through the Optimal Control Theory arguments (Pinto, 
1991), it is possible to manipulate problem (22) in order to 
rewrite it in the following penalized form:  

 ( )

0

min 1
ft

J dt
δ

+∫  (23) 

where: 

 
( )2

0 V VNE
J

V VNE V VNE

<
= 
 − >

 

subject to: 

 ( ) fx xδ <  

Notice that, in problem(23), there is still a formal state 
inequality constraint that, in fact, must be used only as a 
stop criterion in the numerical integrations (as final 
sailplane horizontal displacement).  

CONSTRUCTION OF A SUB-OPTIMAL CONTROL 
PROBLEM  

The problem of finding the exact optimal control law 
for the sailplane trajectory is a hard task to accomplish, 
mainly due to the complexity of the dynamic model 
studied. 

Therefore, it is appropriate to adopt parametric sub-
optimal approximations. These parametric forms for the 
control law can be specified by a finite number of 
coefficients, which transform the optimal control problem 
into a mathematical programming problem (Pinto, 1982).  

In the present paper, the sailplane range was divided 
into finite number of elements over which the sub-optimal 
control must be constant. Therefore, if the sailplane 
trajectory is divided into m elements, one has m parameters 
to be optimized. 

BOUNDARY CONDITIONS  

The boundary conditions to be previously specified are:  

♦  The six initial state variables; 

♦  The distance between the thermals, i.e. the desired 
sailplane range.  

The initial state variables were chosen as the sailplane 
equilibrium conditions at the minimum sink rate velocity. 
This option was made taking into account that this will be 
the sailplane velocity during ascending flights in thermals, 
the condition just before cruising towards the next thermal.  

AERODYNAMIC POLAR  

To allow for fast and coherent numerical operations, the 
LC α× curve was adopted as a function composed by a 

straight line segment connected to cubic polynomials in its 



 

 

extremities. Continuity and smoothness must be preserved 
over the junction points of the linear and cubic portions. 
The maxLC  value and its corresponding attack angle must 
be coincident with the original ones. For the drag polar a 
complete quadratic function was used, as usual.  

OPTIMIZATION ALGORITHM  

Considering the unconstrained and parametric form of 
the penalized sub-optimal control problem, the Fletcher-
Reeves version of Conjugated Gradient Method was 
adopted as an iterative algorithm in order to proceed in the 
search for the optimal solution (Luenberger, 1984). 

NUMERICAL OBJECTIVE FUNCTION 
EVALUATIONS  

For the numerical solutions, the objective function must 
be evaluated by numerical integration of differential 
equations. The following fifth order adaptive version of the 
Runge-Kutta Method was adopted (Press et al., 1992): 

Numerical Integrator 

In order to solve the system of differential equations  

 ( ),y f x y=�  (24) 

with initial condition ( )0 0y x y= , 

use the recursive equation:  
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which coefficients are shown in Table 1. 

Table 1 – Fifth Order Adaptative Runge-Kutta 
Coefficients  

i ia  ijb  ic  

1 - - - - - - 37
378  

2 1
5  1

5  - - - - 0 

3 3
10  3

40  9
40  - - - 250

261  
4 3

5  3
10  9

10−  6
5  - - 125

594  
5 1 11

54−  5
2  70

27−  35
27  - 0 

6 7
8  1631

55296  175
512  575

13824
44275
110592  253

4096
512
1771  

j  1 2 3 4 5  
 

NUMERICAL DERIVATIVES  

One of the greatest hardships in the Fletcher-Reeves 
Method implementation is the evaluation of the objective 
function partial derivatives. This calculation, due to the 
complexity of the objective function, must be done through 
a numerical procedure.  

The perturbation techniques have been the most applied 
practice for the numerical derivatives calculations. A 
simple procedure is to adopt the expression:  

 ( )

( ) ( )
´ f x f x hf x

h
− −

=  (26) 

 ( )
( ) ( )

´ f x h f xf x
h

+ −
=  (27) 

 ( )
( ) ( )

´
2

f x h f x hf x
h

+ − −
=  (28) 

which provides, respectively, the backward, the forward 
and the centered derivatives.  

The use of these expressions is not always satisfactory 
and their convergence is largely dependent on the behavior 
of the function. In the present study, since the behavior of 
the objective function of the problem is not known, one 
cannot consider that to be a well behaved function. Indeed, 
it is expected that this function will present an irregular 
behavior, especially if two effects take place during the 
trajectory: i) sailplane stall, and ii) velocity limit violation, 
when penalties will occur.  

In order to overcome this difficulty, the derivatives 
calculation was made through the Ridders´s Algorithm, 
which controls the magnitude of perturbations (Press et al., 
1992). 

All these previous procedures presented failures around 
the points where the left and right derivates had opposite 
signs or very different magnitudes. In order to overcome 
this problem, the derivatives were evaluated as: 

 ( )
( ) ( )

´
2

f x h f x hf x
h

+ − −
=  (29) 

if the derivates to the left and the right have the same 
sign, and: 

 ( )´ 0f x =  (30) 

if the derivates to the right and the left have opposite 
signs. 

NUMERICAL SOLUTIONS  

Taking for an example the sailplane PIK-20B (see 
Figure 4 and Table 2), the initial conditions for the problem 
are as shown in the expression(31). 



 

 

 
Figure 4 –PIK-20B three views 

 

Table 2 –PIK-20B basic specifications 

Wing Span  15.00 m Maximum weight 450 kgf 

Length 6.45 m FX67-K-170 

Wing area 10.00 m2 

Wing profiles: 

FX67-K-150 

Aspect Ratio 22.50 Hor.Tail span   2.00 m 

Empty weight 220 kgf Hor.Tail area  0.975 m2 
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The PIK-20B drag polar (Pinto et al., 1999) was 
adjusted as to following parabolic expression (attack angle 
in degrees) (Figure 5): 
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The LC �× curve was defined as  (Figure 5): 
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Figure 5 –PIK-20B aerodynamic curves 

Optimal results were obtained for three ranges: 1000, 
2000, and 4000 meters. 

Table 3 shows the optimal results for the problem with 
1000m of range, considering 1, 2, 4, and 8 elements. The 
sub-optimal trajectories, velocity profiles and control 
curves, are shown, respectively, at Figure 6, Figure 7, and 
Figure 8.  

Notice that, for the convergence criteria adopted, 
solutions with 4 and 8 elements are identical.  

For the 2000m range problem the optimal results 
obtained for 1, 2, 4, and 8 elements are shown in Table 4, 
Figure 9, Figure 10, and Figure 11.  

Notice that, once again, for the convergence criteria 
adopted, solutions with 4 and 8 elements are identical.  

Similarly, the optimal results obtained for the 4000m 
range problem are shown in Table 5, Figure 12, Figure 13, 
and Figure 14. 

Notice that, in this case, the 4 and 8 elements solutions 
are significantly different. 



 

 

Table 3 –1000m range results 
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Figure 6 – 1000m range sub-optimal trajectories  
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Figure 7 – 1000m range velocity profiles  
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Figure 8 – 1000m range sub-optimal control 

Table 4 – 2000m range results 
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Figure 9 – 2000m range sub-optimal trajectories 
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Figure 10 – 2000m range velocity profiles 
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Figure 11 – 2000m range sub-optimal control 

 



 

 

Table 5 – 4000m range results 
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Figure 12 – 4000m range sub-optimal trajectories 
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Figure 13 – 4000m range velocity profiles 
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Figure 14 – 2000m range sub-optimal control 

 

ANALYSIS OF RESULTS 

Figure 15, Figure 16, and Figure 17 show the overlay of 
optimal trajectories results for 1000m, 2000m, and 4000m 
range problems, taking into account the finest 
discretization.  
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Figure 15 – Optimal trajectories 
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Figure 16 – Optimal Velocity profiles 

0 1000 2000 3000 4000
-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

 

Range
 1000m
 2000m
 4000m

El
ev

at
or

 A
ng

le
 [°

]

Horizontal Distance [m]  
Figure 17 – Optimal controls 

COMMENTS 

i) Notice that the optimal trajectory has the 
tendency to reach, as fast as possible, the 
aircraft velocity limit (VNE) and from then, 
sustain this velocity until the end of flight. 



 

 

Apparently, the ideal point to reach the VNE is 
approximately at 500m of horizontal 
displacement.  

ii) One must also notice that the obtained sub-
optimal trajectory was not firmly established 
on the VNE. The small variation obtained 
would probably be removed if higher numbers 
of elements are taken into account and if more 
precise convergence criteria are adopted.  

iii) Tests were performed using a classic non 
adaptive fourth order Runge-Kutta Method. 
The results do not reached the minimum 
precision desired, even with a progressive 
integration step reduction.  

CONCLUSION 

A dynamic model for sailplane symmetrical motion 
which takes into account pitch motion, non-linearity on lift 
curves and air density variations according to height was 
presented. A procedure to obtain the minimum time 
trajectories for competition sailplane crossing between 
thermals was developed. Sub-optimal results were obtained 
for 1000m, 2000m, and 4000m range trajectories for the 
sailplane PIK-20B. 

The obtained results are promising and the authors 
intend to adopt more elaborate sub-optimal control laws in 
order to obtain the optimal trajectories for the complete 
mission.  
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