
JOURNAL OF AIRCRAFT

Vol. 43, No. 4, July–August 2006

Viscous-Inviscid Method for Airfoil Analysis
and Design for Aviation and Windmills

Risto Peltonen∗

Helsinki University of Technology, Laboratory of Aerodynamics, Fin-02015 TKK, Finland

This study examines an advanced viscous-inviscid interactive method developed for the analysis and design of
airfoils in two-dimensional subsonic compressible flow (Ma∞ < 0.4). Inviscid flow is solved with a panel method.
The laminar boundary layer is calculated by Thwaites’ method. Transition is determined by Michel’s relation or the
en method. An integral solution for a turbulent boundary layer is derived from an entrainment equation. Closure
conditions are obtained with empirical relations. Singularities near the separation are avoided by inverting the
boundary-layer method. Inviscid and viscous flows are coupled with transpiration. The analysis method is used as
a “black box” in the design tasks. The geometry of the starting airfoil is perturbed iteratively by transpiration until
the pressure distribution converges to a predefined target. This study proposes the necessary degrees of freedom
in the target velocity distribution to obtain a closed airfoil. Design cases are included, which support the general
applicability and accuracy of the numerical design method.

Nomenclature
c = chord length
cd = drag coefficient
CE = entrainment coefficient
C f = skin-friction coefficient based on edge velocity

C f = 2τw/(ρu2
iw)

C f 0 = skin-friction coefficient based on free-stream velocity
C f 0 = 2τw/(ρu2

∞)

cl = lift coefficient
cm = pitching-moment coefficient around 0.25c
Cp = pressure coefficient Cp = 2(p − p∞)/ρU 2

∞
H1 = velocity-profile form parameter H1 = (δ − δ1)/δ2

H12 = boundary-layer form parameter H12 = δ1/δ2

Ma = Mach number
n, t = unit vectors in n, s directions
N = number of collocation points
Q = total velocity Q = (u2 + v2)0.5

Re = Reynolds number based on chord length Re = Q∞c/ν
Rex = Reynolds number based on distance Rex = uiwx/ν
Reδ2 = Reynolds number based on momentum thickness

Reδ2 = uiwδ2/ν
s, n = curvilinear-streamline dimensionless coordinates

(s = S/c and n = N/c)
u, v = mean flow velocity components in s, n directions
x, y = Cartesian dimensionless coordinates

(x = X/c and y = Y/c)
α = angle of attack
β = compressibility transformation coefficient

β = (1 − Ma2
∞)0.5

γ = strength of a vortex; specific-heat ratio
δ = boundary-layer thickness
δ1 = displacement thickness
δ2 = momentum thickness
η = distance between singularity surface and airfoil
μ = dynamic viscosity
ν = kinematic viscosity ν = μ/ρ
ρ = air density
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 = relative blowing velocity 
 = viw/uiw

σ = strength of a source
τ = shear stress; airfoil thickness ratio
� = velocity potential
ω = relaxation parameter

Subscripts/Superscripts

i, I = quantity resulting from inviscid calculation
T = target
TE = trailing edge
U, L = upper, lower surface
V = quantity resulting from viscous calculation
w, W = body wall, wake centerline
∗ = incompressible

Introduction

T HERE are several different methods for analyzing and design-
ing airfoils, ranging from conformal-mapping techniques1 to

the use of the Navier–Stokes flow solvers. The first mentioned
techniques solve inviscid flows whereas the Navier–Stokes flow
solvers take the viscosity into account. However, the computation
times and costs involved when employing the Navier–Stokes flow
solvers, even with the latest generation of supercomputers, remain
prohibitive for routine work in the applications of the present study.

The goal is to develop a theoretical model for analyzing and
designing two-dimensional single-component airfoils for subsonic
flow. The model should include all the necessary viscous and sub-
sonic compressibility effects and should serve sailplane, other gen-
eral aviation, and wind-turbine applications. In addition, the method
should include tools that the designer can use to achieve specific
characteristics for the target airfoil.

The methods that predict flows over an airfoil are analysis meth-
ods. Relatively few address the design of airfoils, but those that do
fall into two categories. The first is the optimization method, where
an optimization algorithm iteratively modifies the geometry of the
airfoil to maximize the lift coefficient or the glide ratio or minimize
the drag coefficient. The second category consists of methods where
a potential method is inverted. Theodorsen and Garrick (1933) pro-
posed that Theodorsen’s conformal-mapping method2 could be used
in airfoil design by inverting the analysis process. This approach
proved possible and led to the development of the laminar low-drag
NACA 6-series airfoils. These airfoils were to some extent designed
to fit a predefined pressure distribution.

Among the first to propose an exact solution for the inverse prob-
lem using conformal mapping were Mangler (1938) and Lighthill
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(1945), as noted by Selig and Maughmer.3,4 They showed that, in
the inverse design problem, the surface-pressure distribution and
free-stream speed cannot be prescribed independently. The geome-
try of an airfoil is closed only if the given speed distribution satisfies
certain integral constraints.

The inversion of a panel method is usually a rather complicated
task. However, the vortex-panel method (Oeller’s method) has been
inverted successfully for inviscid flows.5,6 Here, the values of the
singularities are obtained directly from the target velocity distribu-
tion. Then it is possible to determine the influence coefficients and
the airfoil without matrix inversion.

The relation between accuracy and efficiency in viscous-flow pre-
dictions is an important factor when selecting a method for analyzing
and designing airfoils. In this study, the so-called viscous-inviscid
technique is employed. Here, boundary-layer methods for thin shear
layers (� c) are combined iteratively with potential flow methods
for external inviscid flows to provide a composite solution to the
problem. The selection is based on the facts: The method is essen-
tially faster than the use of the Navier–Stokes flow solver, provides
results nearly as accurate as the Navier–Stokes flow solvers, and
presents possibilities to solve the geometry of an airfoil to fit a pre-
defined pressure distribution.

In this work, the inviscid method is formulated to include a
nonzero normal wall velocity (transpiration), which is a sum of two
components: one obtained from the viscous calculations to compen-
sate a boundary layer and a second one needed in design tasks to
deform an airfoil. A mild compressibility is taken into account with
the Prandtl–Glauert coordinate transformation.

The basic boundary-layer equations (momentum and entrain-
ment) are written into a set of integral equations. For an attached
flow, the boundary-layer variables and transpiration velocity are
calculated from the pressure distribution obtained from the invis-
cid calculations. This method is the so-called direct boundary-layer
method, which becomes singular at the separation point. In this
study, the calculations are then inverted, which means that the pres-
sure distribution and the boundary-layer variables are calculated
from the transpiration velocity. A so-called semi-inverse boundary-
layer method, proposed by Le Balleur,7 is applied where the in-
verse shear-layer calculations are matched with the direct inviscid
calculations.

The idea of including the second transpiration component into
viscous-inviscid codes has great advantages because it easily con-
verts analysis codes into design codes. The target pressure can be
first analyzed with the viscous method so that the aerodynamic prop-
erties are acceptable. Then the transpiration component to compen-
sate a displacement thickness can be solved. The target airfoil is then
solved by correcting the contour of a starting airfoil by the second
component of the transpiration until the viscous-inviscid pressure
distribution is close enough to the target. This method is fast, and
only a few matrix setups and inversions are needed. The theory de-
scribed is coded for personal computers. Recently the method has
been successfully applied to the investigations of an aircraft accident
caused by wing-tip stall.8

Geometry Changes by Transpiration
The surface blowing transfers the streamline starting from the

stagnation point to a specific distance from the airfoil. This obser-
vation, which presents the possibility of changing the geometry of
an airfoil without moving the singularity surface, forms the basis
for the new design method developed in this study. By correcting
the blowing velocity iteratively, it is possible to change the flow
pattern so that the pressure distribution becomes equal to a target
pressure. A curvilinear rectangular coordinate system (s, n) is fixed
on the starting airfoil. The target airfoil can be expressed in the same
coordinate system by adding a displacement in the n direction to the
airfoil (Fig. 1),

η = η(s) (1)

With the surface correction η given, the displacement thickness δ1

obtained from the boundary-layer equations, and tangential velocity

Fig. 1 Target airfoil expressed by adding a displacement η(s) in the n
direction to the initial airfoil.

u obtained from the inviscid method, the normal velocity v has the
following expression in the design code:

v = 1

ρ

d

ds
[ρu(δ1 + η)] = viw + vη (2)

In the analysis mode η (and vη) is set to zero.

Panel Method
In the present study, the singularity combination has a piecewise,

constant-strength distribution of sources and vortices along straight-
line panels. The method includes wake effects and a mild com-
pressibility (Ma∞ < 0.4) by the Prandtl–Glauert coordinate trans-
formation. The vortex distribution around the airfoil can be constant
(ξ = 1) or a parabolic distribution,

ξ(x) = √
1 − x, 0 ≤ x ≤ 1 (3)

Singularities are distributed over each of N panels along the surface
of the airfoil and Nw panels along the wake-dividing streamline.
The resulting system of linear equations for normal velocities at the
panels on the airfoil reads as follows:

vi =
N∑

j = 1

ai jσ j + γ

N∑
j = 1

bi jξ j + Qefi · ni (4)

or

[a][X ] = [R] or

N + 1∑
j = 1

ai j Xi = R j (5)

The matrix [a] contains normal velocity influence coefficients. In
the vector [R] = [−Qef · n + v], the effective freestream velocity Qef

is sums of the constant free-stream velocity Q∞ and the velocity
induced by the singularities of the wake. The system is closed via
the Kutta condition of equal tangential velocities at the trailing edge.

The calculation of the unknown singularities on the airfoil [X ] =
[σ j , γ ] is reduced to

[X ] = [a]−1[R] or Xi =
N + 1∑
j = 1

a−1
i j R j (6)

where the a−1
i j are the elements of the inverted matrix [a]. In the

wake sink and vortex, distributions are obtained using the viscous
method and the definitions for normal and tangential velocity jumps:

σ = 〈vW 〉 = 
U,L
1

ρiW

d

ds
(ρiW uiW δ1) (7)

γ = 〈uW 〉 = 
U,L − kuiW (δ1 + δ2) (8)

The curvature of the wake is determined by the curvature of the
wake center, which is defined as the radius or using (x, y) coordi-
nates of the streamline starting from the trailing edge:

kW = 1

r
≈ d2 y

dx2
(9)
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Tangential velocity distribution on the airfoil and in the wake-
dividing streamline is obtained by summing the effects of the sin-
gularities and the free-stream velocity:

ui =
N∑

j = 1

σ j Ai j + γ

N∑
j = 1

ξ j Bi j +
NW∑

k = 1

σk Aik +
NW∑

k = 1

γk Bik + Q∞t

(10)
Here A and B are tangential-influence coefficients of the singulari-
ties on the airfoil and in the wake.

If the shape of the singularity surface remains unchanged, then
the influence matrix setup and inversion occurs only once and the
inviscid part of the calculations is reduced to Eqs. (6) and (10).
Avoiding subsequent matrix operations is a significant point in fa-
vor of iterative-calculation economy, because the matrix setup and
inversion of influence coefficients are the most time-consuming pro-
cedures in the panel methods.

If ξ(s) = 1, an unrealistic pressure loop is found near a cusped or
thin trailing edge of an airfoil. This problem has been demonstrated
in Ref. 9. The loss of accuracy results from the vortex influence of
opposite panels that may be close to each other. This inaccuracy can
be removed using a parabolic vortex distribution so that the vortex
disappears at the trailing edge.

Integral Relations for Boundary Layers and Wakes
An important computational requirement is the capability to ac-

curately represent flows with a limited trailing-edge separation
region. A transition with a possible separation bubble should be
represented analytically in a continuous manner. Computational
economy, meaning as few viscous variables as possible, is very
important in the global solution procedure. To meet these require-
ments, the viscous flow calculation is based on the solution of in-
tegral equations for a compressible boundary layer. The tangential
velocity distribution calculated with the panel method is transferred
to the boundary-layer procedures through the definition uiw . The
transpiration-velocity component compensating the boundary layer
is denoted with viw .

Laminar Boundary Layer and Transition
For the laminar part of the boundary layer, the momentum thick-

ness is solved by Thwaites’ method10,11:

δ2
2(s) = 0.45

Re u6
iw

∫ s

0

u5
iw ds (11)

Then the empirical closure relations give information on the shape
factor H12 and skin friction C f . The compressible correction is done
as proposed by Cohen and Reshotko.12 Thwaites’ method is fairly
accurate, but as a single-equation method it cannot describe sepa-
rated flow regions.

In the decelerating flow, laminar separation is deduced from a
velocity-gradient parameter λ (Ref. 11):

λ = Re δ2
2

duiw

ds
(12)

Laminar separation is expected to occur at a location s where
λ(s) ≤ −0.09. Two alternative criteria are used to predict the natural
transition point.

The en Method
A boundary layer will be initially laminar and will become unsta-

ble at the point sCr where undamped Tollmien–Schlichting waves
first appear. These waves will grow and distort until the point of
transition, or fully turbulent flow, is reached. A transition predic-
tion assumes that the transition occurs when the amplitude of the
most unstable Tollmien–Schlichting wave in the boundary layer has
grown by some factor, usually taken to be A/A0 = e10 ≈ 22,000.

The empirical relations by Drela and Giles13 are easy to imple-
ment in Thwaites’ method. The natural logarithm of the maximum
amplification ratio is denoted by n, and it is related to the local

boundary-layer parameters H12 and Reδ2. The laminar boundary
layer becomes unstable when the local Reynolds number based on
the momentum thickness Reδ2 exceeds the critical value Reδ2Cr ex-
pressed by the empirical formula:

log10 Reδ2cr =
(

1.415

H12 − 1
− 0.489

)
tanh

(
20

H12 − 1
− 12.9

)
+ 3.295

H12 − 1
+ 0.44 (13)

Then the transition point is determined by integrating the local am-
plification rate downstream from the point of instability sCr

n(s) =
∫ s

sCr

dn

ds
ds (14)

The spatial amplification rate with respect to the streamwise coor-
dinate s from the stagnation point is determined as

dn

ds
= dn

dReδ2

dReδ2

ds
= dn

dReδ2

1

2

(
s

uiw

duiw

ds
+ 1

)
ρiwuiwδ2

2

μiws

1

δ2

(15)
Using the empirical formulas

dn

dReδ2

= 0.01
√

[2.4H12 − 3.7 + 2.5 tanh(1.5H12 − 4.65)]2 + 0.25

(16)

ρiwuiwδ2
2

μiws
= l(H12) = 6.54H12 − 14.07

H 2
12

(17)

s

uiw

duiw

ds
= m(H12) =

(
0.058

(H12 − 4)2

H12 − 1
− 0.068

)
1

l(H12)
(18)

the amplification rate with respect to s is expressed as a function of
H12 and δ2:

dn

ds
(H12, δ2) = dn

dReδ2

(H12)
m(H12) + 1

2
l(H12)

1

δ2

(19)

The transition is assumed to occur when n(s) in Eq. (14) reaches a
critical value (usually from 9 to 12).

Michel’s Empirical Criterion
A relation11 is used to predict the transition-point location. The

transition is supposed to take place when

Reδ2 > 1.174

(
1 + 22,400

Res

)
Re0.46

s (20)

where Res is the Reynolds number based on the distance s from the
stagnation point.

On each side of the airfoil, a transition point is defined nearest
to the stagnation point as allowed by one of the following: laminar
separation predicted by Thwaites’ method, transition predicted by
en or Michel’s method, or user-defined point of transition.

Turbulent Boundary Layer for Attached Flow
The integral equations for a turbulent boundary layer usually com-

prise one equation for the momentum thickness, Eq. (21). Because
the interaction between δ2, H12, and C f is far more complicated
than in laminar flow, independent relations are needed to achieve a
closed system of boundary-layer equations. A characteristic of mul-
tiequation methods is that, if properly formulated, they in principle
can describe thin, separated regions.

In this study, the approach used is the concept of entrainment,11

originally introduced by Head and later extended and improved
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by Green et al.14 Various modifications to improve its applicability
under separated flow conditions have been used as the technical
foundation of this work.15,16

The entrainment-integral relationship is derived from Head’s as-
sumption that turbulent boundary layers grow by a process of en-
trainment from the free stream into the boundary layers of nontur-
bulent flow at the outer edge of the layer. The entrainment into the
boundary layer depends on the velocity defect in the outer part of the
layer and is independent of viscosity. Closure relations are defined
with parameters such as the skin friction and form parameter. This
combination of the basic equations is taken from Green’s method.
The boundary-layer equations for attached flows are listed next.

Differential Equation for Momentum Thickness

dδ2

ds
= 1

2
C f − (

H12 + 2 − Ma2
iw

) δ2

uiw

duiw

ds
(21)

Differential Equation for Form Parameter H∗
12

The entrainment coefficient defined by

CE = 1

ρeu

d

ds

∫ δ

0

ρu dn = 1

ρiwuiw

d

ds
[ρiwuiw(δ − δ1)] (22)

is the (dimensionless) rate at which fluid from the external inviscid
flow enters through the outer edge of the boundary layer. By defining
an entrainment form parameter by the formula H1 = (δ − δ1)/δ2,
Eq. (22) becomes

CE = H1

dδ2

ds
+ H1

(
1 − Ma2

iw

) δ2

uiw

duiw

ds
+ δ2

dH1

ds
(23)

By combining Eqs. (21) and (23) and using the form-parameter
definition H12, the following second boundary-layer equation is
obtained:

dH ∗
12

ds
= 1

δ2

dH ∗
12

dH1

{
CE − H1

[
0.5C f − (H12 +1)

δ2

uiw

duiw

ds

]}
(24)

For a compressible flow H ∗
12 (in any previous form) should be re-

placed by the transformed form parameter H12:

H ∗
12 = δ∗

1

δ2

= 1

δ2

1

ρiwuiw

∫ δ

0

ρ(ui − u) dn (25)

With zero wall-heat transfer, the relation is14

H12 = (H ∗
12 + 1)

(
1 + 1

5
Ma2

iw

) − 1 (26)

The two basic differential equations (21) and (24) contain three
variables, uiw , H ∗

12, and δ2. The direct formulation corresponds to a
solution with a prescribed velocity distribution uiw .

Closure Conditions
Before the basic differential equations can be solved, additional

unknowns must be specified by further assumptions (closure con-
ditions) that are empirical and theoretical. The following functional
dependencies are assumed:

1) The entrainment coefficient is a function of H1, CE = G(H1)
(Ref. 17):

CE = λ0.0306(H1 − 1)−0.6169 (27)

with extension λ = 1 on the airfoil and λ = 2 in the wake.
2) The entrainment form parameter H1 is in turn a function of

H ∗
12; that is, H1 = F(H ∗

12):

H1 =

⎧⎪⎨⎪⎩
0.63H ∗2

12 + H ∗
12

H ∗
12 − 1

− 0.65, H ∗
12 < 2.60851

4.0 + a1

H ∗
12 + a2

+ a3

H ∗
12

, H ∗
12 ≥ 2.60851

(28)

3) The local skin-friction coefficient C f is a function of the form
parameter H ∗

12, the Reynolds number based on momentum thickness
Reδ2, and the local Mach number Maiw . The relation is

FcC f = 0.3e−1.33H∗
12

(
log10

Reδ2

Fc

)−1.74 − 0.31H∗
12

+ 1.1 × 10−4

[
tanh

(
4 − H ∗

12

0.875

)
− 1

]
(29)

with

Fc = 1 + 1
5

Ma2
iw (30)

Many closely related alternatives have been proposed for the form
parameter H1 (Refs. 18–22). In this study, Eq. (28) has been devel-
oped to describe both the attached and separated flow regions using
an empirical approach supported by experimental data published in
Ref. 23. When H ∗

12 < 2.60851, a curve-fitting technique and numer-
ical tests are used to define the constants. The pressure distribution
has been found realistic and nearly constant in highly separated
flows when H1 approaches asymptotically the value 4.0. In the case
of H ∗

12 ≥ 2.60851, the coefficients a1, a2, and a3 are found from a
smooth-matching condition so that the form parameter H1 is contin-
uous at H ∗

12 = 2.60851 up to the second derivative. The coefficients
are a1 = 0.02039, a2 = −2.25293, and a3 = −1.09717.

The skin-friction coefficient is taken from the work of Swafford,24

which gives C f < 0 when the flow is separated.
The uncertainties in the definition of H1, together with similar

problems regarding the calculation of CE , represent the chief lim-
itations to entrainment methods. Unfortunately, it is unlikely that
any unique (H ∗

12, H1) and (H1, CE ) relationship can be found that is
valid for all cases of practical interest. However, the main numerical
results of such methods (values of δ1, δ2, and C f , for example) are
not unduly sensitive to either of these features, which explains their
general success in a wide variety of cases.

Initial data for turbulent flow is specified at the transition or reat-
tachment point. It is assumed that the momentum thickness is con-
tinuous in a natural transition, and the initial turbulent value of δ2 is
taken from the laminar calculations.

Transition Strip
If the transition point is specified by input, a simple transition

strip-modeling by Michel and Arnal.25 is incorporated, which in-
creases the momentum thickness by

�δ2Tr = 0.5CD

(
u(h)

uiw

)2

h (31)

Here h is the height of the transition strip, and u(h) is the velocity
in the laminar boundary layer without the transition strip at n = h. It
appears that high turbulence intensities are not created on the rough-
ness itself but rather in a separated region downstream. In an ideal
case, the transition strip has a height that only fixes the transition
without additional drag. However, the height of the transition strip
is usually more than that needed to cause a transition. Experimental
tests show that CD is usually close to 0.4 but increases up to 0.6 when
the roughness height is greater than the boundary-layer thickness.

Inverting Viscous Calculations
The function H1 = F(H ∗

12) has a minimum at H ∗
12 ≈ 2.6, and here

the derivative dH ∗
12/dH 1 becomes infinite. Near the minimum, high

values of the derivative increases the error in the second basic differ-
ential equation (24). The singular point can be avoided by solving in
an inverse manner, in which 
 is specific and duiw/ds is unknown.
The relative blowing velocity can be calculated from the equation


 = 1

ρiwuiw

d

ds
(ρiwuiw H12δ2) = H12

dδ2

ds

+ H12

(
1 − Ma2

iw

) δ2

uiw

duiw

ds
+ δ2

dH12

ds
(32)
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To eliminate dH12/ds from Eq. (24), we first differentiate Eq. (26),
using the derivative

dMa2
iw

ds
= 2Ma2

iw

[
1 + 1

2
(γ − 1)Ma2

iw

]
1

uiw

duiw

ds
(33)

to obtain (γ = 1.4)

dH12

ds
=

(
1 + 1

5
Ma2

iw

)
dH ∗

12

ds
+ 2

5
Ma2

iw(H12 + 1)
1

uiw

duiw

ds
(34)

The three equations (21), (23), and (32) can be written in matrix
form as⎛⎜⎜⎜⎝

1 H12 + 2 − Ma2
iw 0

H1 H1

(
1 − Ma2

iw

)
H ′

1

H12 H12 + 1

5
Ma2

iw(2 − 3H12) 1 + 1

5
Ma2

iw

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

dδ2

ds
δ2

uiw

duiw

ds

δ2

dH ∗
12

ds

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎝0.5C f

CE




⎞⎠ (35)

where H ′
1 = dH1/dH ∗

12. These equations can be solved to give the
momentum thickness, velocity, and form parameter.

Momentum Thickness

(H12 + 1)D
dδ2

ds
= (

H12 + 2 − Ma2
iw

){
CE

(
1 + 1

5
Ma2

iw

)

− 
H ′
1

}
− 0.5C f

{
H1 − H12 H ′

1 − 1

5
Ma2

iw

(
4H1 + 2H ′

1

− 3H12 H ′
1

) − 1

5
Ma4

iw H1

}
(36)

Velocity

(H12 + 1)D
δ2

uiw

duiw

ds
= 
H ′

1 + 0.5C f

{(
1 + 1

5
Ma2

iw

)
H1

− H12 H ′
1

}
− CE

(
1 + 1

5
Ma2

iw

)
(37)

Form Parameter

Dδ2

dH ∗
12

ds
= 
H1 − 1

5
Ma2

iw H1C f − CE

(
H12 − 2

5
Ma2

iw

)
(38)

The inverted equations contain a parameter

D = (
2
5

Ma2
iw − H12

)
H ′

1 + (
1 + 1

5
Ma2

iw

)
H1 (39)

If the flow is highly separated (H12 > 5), then approximations
H ′

1 ≈ 0, C f ≈ 0, and H1  CE reduce the velocity equation (37)
to the form

(H12 + 1)
δ2

uiw

duiw

ds
≈ 0.5C f − CE

H1

≈ 0 (40)

This results in a nearly constant velocity distribution, which has
been observed in wind-tunnel tests for separated flows. Switching
to the inverted equations (36–38), when H ∗

12 > 1.9, the parameter

D can never vanish and thus the inverted boundary-layer equations
are nonsingular. The three equations are integrated simultaneously,
similar to the treatment of the direct equations. The inverse method
predicts a velocity distribution uiw , δ2, and H ∗

12 from a given relative
blowing-velocity distribution 
.

Viscous-Inviscid Matching Procedure
Direct Matching

In attached flows, the classical direct matching scheme is used.
For a turbulent boundary layer, the user can select an initial value of
H ∗

12. For natural transition, the starting value is found in experiments
usually to be 1.3 to 1.6, and when a separation bubble or a transition
strip exists, a value of about 1.8 is found.25 The form parameter
of turbulent flow lies in a rather narrow range in a slight pressure
gradient. The boundary-layer parameters soon find their equilibrium
values that do not depend on the initial values.

On the airfoil, the boundary-layer equations are integrated si-
multaneously using a fourth-order Runge–Kutta method,26 with the
same calculation grid as in the panel method. The boundary-layer
calculations are continued downstream from the trailing edge with
C f = 0. Both sides of the wake are calculated separately using the
inviscid velocity uiW on the dividing streamline. The drag coeffi-
cient cd converges when the length of the wake is about 10 chords.
The momentum thickness is continuous at the trailing edge, but
the trailing edge thickness hTE is added to the initial values of the
displacement thicknesses.

The blowing velocity is relaxed using the difference between the

computed v
(n + 1)

iw and the previous v
(n)

iw blowing velocity

v
(n + 1)

iw = v
(n)

iw + ω1β
(
v

(n + 1)

iw − v
(n)

iw

)
(41)

The direct matching can always be stabilized by underrelaxation
(ω1 = 0.1 − 0.3) and it usually converges quickly.

Semi-Inverse Matching
From the beginning of the inverse boundary-layer solution, the

relative blowing velocity


 = viw

uiw
= 1

ρiwuiw

d

ds
(ρiwuiw H12δ2) (42)

is updated by the relaxation formula


(n + 1) = 
(n) + ω2β�s

(
1

u(V )

iw

du(V )

iw

ds
− 1

u(I )
iw

du(I )
iw

ds

)
(43)

Here, u(V )

iw is the velocity obtained by the inverse method, and u(I )
iw is

the velocity obtained from the inviscid calculations (panel method).
The factor ω2 can be selected to be from 1.0 to 2.5, and �s is the
local panel length.

The inverse boundary-layer calculation continues into and along
the wake (taking account of possible nonzero trailing-edge thick-
ness) until the value of H ∗

12 drops below the switch value of 1.9.
Then the direct method is adopted again.

Drag Coefficient
The computer program contains three known methods for defin-

ing the drag coefficient:
1) One is from the flow far downstream

cd = 2δ2∞/c (44)

where δ2∞ is the momentum thickness at the end of the wake
calculations.

2) The second is from the flow at the trailing edge with a modified
Squire–Young formula27,28:

cd = 2δ2TEu(H12TE + 5)/2
iw , H12TE = Min(H12TE 2.5) (45)

The drag coefficient is the sum of the values calculated separately
for the upper and lower surfaces.
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3) The third is integrated drag coefficient from the surface-
pressure and skin-friction distributions.

Convergence Criteria
The calculation cycle in the analysis or design mode is repeated

until the following typical convergence limits are reached between
two successive iterations: 1) change in lift coefficient |�cl | < 0.001
and 2) change in trailing-edge pressure coefficient |�Cp| < 0.005.

In the analysis mode, the difference between the direct and inverse
velocity distributions fulfils

�u =
∫ sTE

0

∣∣u(I )
iw − u(V )

iw

∣∣ds < 0.01 (46)

In the design mode the difference between the obtained and target
velocity distribution fulfils

�u =
∫ sTE

0

|uiw − ur |ds < 0.015 (47)

Design of Airfoils
The problem of designing airfoils has been a subject of consid-

erable theoretical interest for more than half a century. The aero-
dynamic performance of an aircraft (wind generator, F1 car, etc.)
can be greatly enhanced by tailoring the airfoil to its specific re-
quirements. A slight drag decrease of a big transport aircraft may
result in remarkable fuel savings in a year. Many boundary condi-
tions and requirements should be taken into account, some of which
conflict with each other. For example, a sailplane or windmill wing
profile should have the following characteristics: low drag and mo-
ment coefficient, and high maximum lift coefficient, lift-to-drag ra-
tio (cl/cd ), and power factor (c1.5

l /cd ). Stalling should be smooth
without sensitivity to surface roughness. The profile should be thick
enough for structural reasons.

An inverse problem is to find a geometry that satisfies some pres-
sure or velocity distribution that provides the required behavior of a
boundary layer to give high lift and low drag coefficient. Originally
it was solved for potential flows (conformal mapping), but currently
viscous effects can be taken into account using viscous-inviscid
methods, as in the present study or the Navier–Stokes equations.

If a viscous integral-boundary-layer method is used, the aerody-
namic coefficients can be defined from the target pressure distribu-
tion without solving for the airfoil, as is shown in this work. If the
target pressure has the desired characteristics, the corresponding air-
foil coordinates are then solved, usually by interactive calculations.

The problem is in general not well posed, unless the specific
speed distribution satisfies certain constraints. Any prescribed vis-
cous pressure distribution will not necessarily imply a closed prac-
tical airfoil. Therefore, the pressure distribution must be checked by
determining the geometry of the airfoil. A good design code should
have free parameters to modify the target pressure distribution or
the resulting airfoil. In practice, the modifications are reduced to a
variation of the trailing-edge velocity and a slight bending of the
airfoil contour to close the geometry.

Using an Analysis Code in Airfoil Design
It is quite often impossible to fully invert an analysis code. Semi-

inverse design methods are quite popular because every analysis
code or a part of it (e.g., influence coefficients) can be used. Here
the inverse problem is nonlinear and the unknown surface is solved
iteratively.

In this study, a Neumann-type residual-correction design method
is selected. The main advantage is its simplicity. In principle, every
analysis code can be used without modifications, but those using
surface transpiration to represent viscous effects are preferred. Be-
cause transpiration can also be used to modify the airfoil contour, the
number of mesh-correction operations can be considerably limited.

The analysis code is retained in its original form and can be treated
solely as a “black box.” The same viscous and compressible effects
that occur in the analysis tasks can be included in the airfoil design.

Efforts can be concentrated on coding an inverse routine, based on a
suitable approach, and on coupling the routine to the analysis code.
The analysis code can easily be replaced with a more advanced code
when one becomes available.

Semi-Inverse Residual-Correction Method
Basic Equations

In this study, the geometry of an airfoil is corrected in the first
stage by transpiration. The target velocity distribution is denoted
by uT . The calculations are organized in a design task as follows:
the boundary layer and blowing velocity viw are solved from the
selected target velocity distribution uT , and the analysis code will
calculate the tangential velocity distribution u when the blowing
velocity v is detected as Eq. (2):

v = 1

ρ

d

ds
[ρuT (δ1 + η)] = viw + vη (48)

A correction algorithm is needed, which defines η from the dif-
ference between the target uT and actual uiw velocity distribution.
The final aerodynamic shape is approached in a stepwise fashion
through a cyclic iteration between the viscous-inviscid flow solver
and airfoil geometry corrector. The airfoil is found when the target
and actual velocities become identical. In this study, an auxiliary
partial differential equation is proposed that is solved for a geome-
try correction of a surface during each design cycle.

The pressure distribution is assumed to be a function of the thick-
ness, slope, and curvature of the airfoil and free-stream conditions.
With these assumptions, Garabedian and McFadden29 have devel-
oped a corrector that is a second-order differential equation. Also
Malone et al.30,31 have used the same formula in a semi-inverse
Navier–Stokes design method.

In this study, the pressure distribution is taken to be a function of
the y-coordinate of the profile except near the trailing edge where
it is a function of the slope of the contour. The following first-order
differential equation is obtained:

η + K
dη

ds
= R (49)

Near the trailing edge (x ≥ 0.95c) on the suction side [qt (s) > 0] the
constant K equals 1, and on the pressure side [qt (s) < 0] K equals
−1. Otherwise (x < 0.95c) K is set to 0. The pressure (velocity)
residual R is

R = �s

⎧⎨⎩
ω1

(
u2

T − u2
iw

)
, x(s) < 0.95c

ω2

(
1

uT

duT

ds
− 1

uiw

duiw

ds

)
, x(s) ≥ 0.95c

(50)

The relaxation coefficients ω1,2 are selected from 0.1 to 0.4 to pro-
vide a stable iterative process, and �si is the length of panel i .
Equation (49) is written for the correction �η to the coordinates as

�η + K (�η)s = R (51)

The computational grid is still the same as in the analysis. Around
the initial airfoil (0 ≤ s ≤ sTE) at each control point (panel midpoint)
Pi , i = 1, . . . , N , Eq. (51) is discretized by the central-difference
approximation

�ηi + K
�ηi + 1 − �ηi − 1

si + 1 − si − 1

= Ri , i = 2, . . . , N − 1 (52)

A forward- and backward-difference approximation is used for the
endpoints

�η1 + K
�η2 − �η1

s2 − s1

= R1 (53)

�ηN + K
�ηN − �ηN − 1

sN − sN − 1

= RN (54)
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A typical equation evaluated at the i th point on the initial surface is

Ai�ηi + 1 + Bi�ηi + Ci�ηi − 1 = Ri (55)

The following expressions are obtained for the coefficients:

AN = 1 + K

sN − sN − 1

, BN = − K

sN − sN − 1

(56)

Ai = K

sn + 1 − sn − 1

, Bi = 1,

Ci = − K

sn + 1 − sn − 1

, N = 2, . . . , N − 1 (57)

The algebraic Eqs. (55) form a tridiagonal system, which is solved
for values of �ηi with the Thomas algorithm26:⎛⎜⎜⎜⎜⎜⎜⎝

B1 C1

A2 B2 C2

A3 B3 C3

· · · · · · · · ·
An − 1 BN − 1 CN − 1

AN BN

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

�η1

�η2

�η3

· · ·
�ηN − 1

�ηN

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

R1

R2

R3

· · ·
RN − 1

RN

⎞⎟⎟⎟⎟⎟⎟⎠ (58)

The inverse problem can be solved by the iteration process as
follows:

1) When the starting airfoil is selected, the initial guess for airfoil
correction in the normal direction is set to η(s)(1) = 0.

2) Using the boundary-layer procedure, the displacement thick-
ness δ1 is calculated from the target velocity distribution uT . If this
flow is attached (H ∗

12 < 1.9), only one direct boundary-layer calcu-
lation is needed on the airfoil. In the wake, the iterative direct or
inverse boundary-layer procedure is repeated as part of the design
cycle.

3) The new blowing velocity v = viw + vη, compensating the
boundary layer and correcting the geometry, is obtained from
Eq. (47). Using v as input, a pressure distribution is calculated by
the inviscid method including the viscous and wake effects on the
initial airfoil as in the analysis mode.

4) The local residuals Ri are determined from Eq. (50) and the
tridiagonal system Eq. (58) is solved for the incremental change in
the surface coordinates �ηi .

5) At the end of the design cycle, the displacement for the initial

airfoil η
(n + 1)

i is updated as follows:

η
(n + 1)

i = η
(n)

i + �ηi , i = 1, . . . , N (59)

The design procedure is repeated until the local residuals Ri in
Eq. (58) disappear and the calculated velocity uiw and target velocity
uT distributions are equal within the tolerance limits.

Defining the Coordinates
The initial airfoil (xi , yi ), i = 1, . . . , N + 1, is stretched in the

normal direction (Fig. 2). The coordinates of the target airfoil are

(xi , yi )
(n + 1) = (xi , yi ) + 0.5

(
η

(n + 1)

i − 1 + η
(n + 1)

i

)
(nx , ny)i (60)

Here (nx , ny)i are the scalar components of the normal unit vectors
n◦

i on the contour. Finally, the coordinates are normalized so that
the leading edge is tangential to the y-axis and at the trailing edge
x = 1.

Fig. 2 Initial airfoil is stretched in the normal direction to obtain the
target airfoil.

Trailing-Edge Closure
An airfoil determined for an arbitrary pressure distribution has

an open trailing edge or crossed surfaces. For viscous flows there
are no analytical constraints to guarantee a closed solution (or a
particular trailing-edge thickness). This indicates that a specified
surface-velocity distribution has to be altered in such a manner as
to satisfy the geometrical requirements. Usually the ideal speed
distribution is modified over selected segments of the airfoil surface.
The desired characteristic of a velocity (e.g., “rooftops,” Wortmann-
type pressure recovery, rear or front loading) can be retained with
little or no modification. The target pressure can be corrected by the
following methods.

1) Using feedback from the resulting airfoil, the target trailing-
edge velocity is corrected manually, which affects the velocity gra-
dient in the turbulent flow. If the airfoil chord tends to rotate, the
initial angle of attack may be corrected at the same time.

2) The final trailing-edge closure is obtained by rotating the airfoil
contours around the leading edge. If � is the trailing-edge thickness
obtained and �T is the target value, the rotated y-coordinates for
the upper and lower surfaces are, respectively,

yu,l(x) = yu,l(x)(n + 1) ± 0.5(�T − �)(x/c) (61)

Usually 5 to 20 transpiration iteration cycles result in conver-
gence. The geometry obtained is then the new initial airfoil. About
3 to 15 target-pressure corrections and matrix inversions are needed
to obtain a sufficiently accurate result.

Target Velocity-Distribution Equations
The pressure levels of the upper and lower surfaces are deter-

mined by the lift coefficient. To cover all the viscous effects, a
laminar-turbulent transition is implemented in the predefined pres-
sure distribution. There is no need to define the geometry of an
airfoil at first. Because there are two separate modules in the it-
erative viscous-inviscid methods, the viscous characteristics of the
target velocity distribution can be analyzed first.

On the upper and lower sides of an airfoil, the velocity distribution
is divided into five regions. These regions are illustrated schemati-
cally in Fig. 3.

Stagnation Region
After the initial airfoil has been selected, the analysis code cal-

culates its inviscid pressure distribution and the stagnation point.
About 1.5% of the calculated velocity distribution downstream from
the stagnation point on both sides of the airfoil is taken to be the
target leading-edge velocity distribution. In this way, the new airfoil
has a realistic leading edge. This means that the user selects from
the initial airfoil the approximate radius of the leading edge. The
velocities at the ends of that region are called stagnation velocities
(see Fig. 3, the region from A to B).
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Fig. 3 Three different upper-side design velocities and correspond-
ing boundary-layer developments at Ma∞ = 0.15 and Re = 3 ×× 106 (see
Table 1).

Acceleration Region
The user selects the arc length of the acceleration region s0 and

the velocity at the end of the acceleration region u0. The target-
velocity distribution uT at sn measured downstream from the end of
the stagnation region is of the form

uT (sn) =
√

u2
0 − (

u2
0 − u2

sT

)
(1 − sn/s0)A (62)

where usT is the velocity at the end of the stagnation region. The
parameter A determines the acceleration, and it affects the overall
radii of the leading edge. Increasing the value A gradually leads to
a rooftop velocity distribution (see Fig. 3, the region from B to C).

Destabilizing Region
Several problems have arisen in the development of an efficient

airfoil for a low-chord Reynolds number. Boundary-layer control
becomes difficult at low-chord Reynolds numbers because of the
increased stability of the attached boundary layers. If the flow de-
celerates too early, laminar separation is common at small angles of
attack. The development of a turbulent boundary layer under these
conditions may depend on the formation of a transitional separation
bubble. The turbulent boundary layer downstream to the separation
bubble is usually thicker than that formed in an attached transition
process. This will result in increased drag coefficient and may lead to
a premature separation of the turbulent boundary layer. Therefore, it
is highly recommended to devise methods to control the separation
bubbles.

There are a few alternative approaches to this problem. Often var-
ious artificial transition-inducing devices (roughness, strips, pneu-
matic blowing, etc.) are used. Another way is Wortmann’s idea of a
destabilizing region. The velocity distribution (see Fig. 3, the region

from C to D) may be constant or have a slight adverse pressure in
the region where laminar separation is expected to occur, allowing
transition but avoiding separation.

On one hand, Thwaites’ method includes a dimensionless gra-
dient parameter λ for the laminar boundary-layer velocity, which
predicts laminar separation when λT < −0.090.

On the other hand, an incompressible-flow transition should be
expected when the momentum-thickness Reynolds number is

Reδ2 = Reδ2uT > 1.174

(
1 + 22,400

Res

)
Re0.46

s (63)

By applying a weak adverse pressure gradient over the long lam-
inar destabilizing region (0.2c − 0.3c), the boundary-layer instabil-
ity will grow without separation. Ideally, for frictional drag, the
laminar-form parameter H12 should remain constant (≈3.2), and a
natural transition should take place just at the steep start of the turbu-
lent pressure region without separation. However, this kind of flow
will have dangerous off-design performance, because the laminar
boundary layer is very close to separation. Even a small increase in
the angle of attack will cause the transition point to move quickly
forward with severe results for lift and drag coefficients. Conversely,
a decrease in the angle of attack causes the transition point to ex-
tend into the steep turbulent recovery region, rapidly increasing the
momentum losses in the bubble. Such highly trimmed airfoils will
also be very sensitive to surface waviness or roughness.

In this study, the velocity distribution of the destabilizing region
is defined for a prescribed velocity-gradient parameter λT by Euler’s
step method. The velocity at point sn + �s is

uT (sn + �s) = uT (sn)

(
1 + uT λT

Reδ2(sn)δ2

�s

)
(64)

The Reynolds number Reδ2 based on momentum thickness is ob-
tained from simultaneous laminar boundary-layer calculations. The
user-defined velocity parameter λT controls how close to separation
the flow is. According to Thwaites’ method, the laminar form pa-
rameter is a function only of the velocity-gradient parameter, so a
constant λT yields a constant H12.

When the design Reynolds number is of the order of 106,
the velocity-gradient parameter should be set in the range
−0.07 ≤ λT ≤ 0.0 (corresponding to 2.6 ≤ H12 ≤ 3.1) to ensure a
safety margin for transition and laminar separation. Ideally, the
length of the destabilizing ramp should be selected such that at
the end a natural transition takes place. If the destabilizing region
is too short, the abrupt pressure recovery at the beginning of the
turbulent region will cause a separation bubble.

Transition/Separation Bubble Region
In low-Reynolds airfoil design (Re < 106), an active transition

mechanism is used, and separation bubbles are allowed. A short
(0.03c − 0.1c) velocity distribution can be introduced from Eq. (64)
at the end of the destabilizing ramp, just steep enough (λT < −0.090)
to ensure separation of the already destabilized laminar boundary
layer. The ramp (see Fig. 3, the region from D to E) should be long
enough to ensure a transition and a reattachment before the flow
enters the turbulent region.

Turbulent Region
The Stratford pressure distribution32 is widely used. It is an an-

alytical expression for the slope of pressure recovery based on a
zero skin-friction criterion throughout the region. Many airfoils
using the Stratford distribution show good lift and lift-to-drag
characteristics.33,34 Their abrupt stall makes them impractical for
applications with high angles of attack, because all of the recovery
region may separate simultaneously.

The shape and amount of recovery-velocity distribution (see
Fig. 3, the region from E to TE) in this study are defined by constant
parameters K and R (Ref. 28),

uT = ur [1 + K (sn − sr )]
R (65)
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Table 1 Effect of design parameters A and B (λ= 0) on
drag coefficient cd , at Ma∞ = 0.15 and Re = 3 ×× 106

Case A B cd (one side)

1 10 −1 0.0031
2 20 0 0.0038
3 60 8 0.0045

where ur is the velocity and sr is the distance at the beginning of
the pressure recovery region.

In many successful sailplane profiles, Wortmann’s velocity dis-
tribution is used,35 which is a special case of Eq. (65). It yields
a constant form parameter H ∗

12 and a linearly growing momentum
thickness, with a derivative β = dλ2/ds when

R = 0.33 − 0.074

6β Re0.2
(66)

and the momentum-thickness parameter is

K = β/δ2r (67)

The derivative β is solved iteratively to give a suitable velocity at
the trailing edge. Wortmann’s distribution requires that the momen-
tum thickness δ2r be known at the beginning of the pressure-recovery
region.

To get more flexibility for the boundary-layer control,
Wortmann’s distribution is modified in this study. Then the param-
eters K and R are functions of the distance sn . They are defined
with a user-selected parameter, which is the second derivative of the
momentum thickness B = dβ/ds = d2δ2/ds2. Now the nonconstant
derivative of the momentum thickness is

β(sn) = βr [1 + B(sn − sr )] (68)

where βr = (dδ2/ds)r is the derivative of the momentum thickness
at the beginning of the turbulent region. When δ2r is obtained from
laminar boundary-layer calculations, then for a given B and trailing-
edge velocity uTE the parameter βr is solved iteratively. To produce
a closed airfoil, uTE can easily be found by trial and error during
the design process. If B is taken positive, the velocity distribution is
less concave, which produces a growing form parameter H ∗

12. This
velocity distribution has a higher drag coefficient, and on the upper
side of the airfoil has a higher lift coefficient, but it is less prone to
abrupt stall. If B is negative, a lower drag coefficient is obtained,
and this distribution is more suitable for the lower side of the airfoil.

In Table 1, the effect of design parameters is introduced. In case
2, the parameter B = 0 represents Wortmann’s original turbulent ve-
locity distribution. The more concave distribution (B = −1.0) will
cause a lower drag coefficient. However, in this case, the develop-
ment of the turbulent boundary-layer-form parameter H ∗

12 will pro-
duce abrupt stalling characteristics. The combination A = 10 and
B = 8.0 is appropriate for training sailplanes when mild stalling
properties are preferred to a high lift-to-drag ratio.

Airfoil Thickness
In many applications the thickness of the airfoil is fixed by struc-

tural or internal volume requirements. It is therefore desirable to
design the performance for a specific thickness. For angles of attack
near zero, the thickness ratio is obtained from the target pressure
distribution by

t/c ≈ −0.325

c

√
1 − Ma2∞

∫ c

0

(Cp,u + Cp,l) dx (69)

Evaluating the Analysis Method
Evaluation of the Transition Methods

The transition methods described were tested to check their abil-
ity to predict the transition on an airfoil at different angles of at-
tack. Reynolds number Re = 3 × 106 was used for the NACA 0012

Table 2 Transition dependence of NACA 0012 for α= 0 deg,
Ma∞ = 0.1, and Re = 3 ×× 106

Method Experimental1,36 Michel e8 e9 e10

cd 0.0059 0.0073 0.0063 0.0061 0.0059
T rU/L 0.45c 0.34c 0.45c 0.47c 0.48c

Table 3 Transition dependence of NACA 0012 for α= 5.0 deg,
Ma∞ = 0.1, and Re = 3 ×× 106

Method Experimental1,36 Michel e8 e9 e10

cl 0.56 0.558 0.559 0.56 0.561
cd 0.0076 0.0086 0.0079 0.0078 0.0077
T rU 0.085c 0.082c 0.091c 0.11c 0.12c
T r L 0.79c 0.75c 0.76c 0.76ca 0.76ca

aLaminar separation.

Fig. 4 Transition predictions for NACA 0012 on the upper side at
Ma∞ = 0.1 and Re = 3 ×× 106 compared to experimental data.

two-dimensional airfoil. The critical exponents n = 8, 9, 10, and
12 for the en method were tested to determine the location of the
transition.

Figure 4 shows the transition predictions compared with exper-
imental values.36 For angles of attack higher than about 8 deg a
laminar separation is detected on both sides of the airfoil. The posi-
tion of a laminar separation is in good agreement with experiments.
When a natural transition is detected, Michel’s method predicts it
slightly too early with moderate angles of attack. The best agree-
ment was found using the en method with the critical exponent
n = 10. When the critical exponent was set to n = 12, Fig. 4 shows
that the transition was moved slightly downstream. The calculations
are still in good agreement with the experiments for all angles of
attack.

For evaluation of the overall transition modeling, two different
angles of attack with different transition models have been used at
Re = 3 × 106. The results are shown in Tables 2 and 3.

Different transition methods have been applied in the analysis
code to improve the computation of airfoil aerodynamic coefficients.
In practical applications, no experimental data are generally avail-
able to optimize the transition method. Numerical results show that
the locations of transition are essential factors in accurately com-
puting the aerodynamic performance of an airfoil. Because the en

method is based on the linear stability theory, many fundamental
aspects of the transition are not taken into account. However, com-
parison between numerical and experimental results indicates that
the en method combined with Thwaites’ laminar separation model
can successfully predict the onset point of a transition. We conclude
that in the en model the critical exponent n for the beginning of
transition is usually in the range 8–9 and for the end of the transi-
tion region n is about 10. From this position, the fully developed
turbulent flow begins, and the turbulent equations are valid in the
calculation model. The accuracy of Michel’s method is adequate
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Table 4 NACA 4412, comparison of results for Ma∞ = 0.18,
Re = 4.17 ×× 106, and α= 12.49 deg

Model cl cd cm Separation

Calculation, no strip 1.57 0.02 −0.063 0.82c
Calculation, strip 1.45 0.026 −0.048 0.74c
Experimental 1.44 0.034 — ≈0.80c

Table 5 NACA 0012, drag coefficient comparison at α= 0 deg
and Ma∞ = 0.3

Re Transition model cd calculated cd experimental

3 × 106 strip 0.05/0.05c 0.01 0.009

3 × 106 free 0.48/0.48c 0.0061 0.006

6 × 106 strip 0.05/0.05c 0.0094 0.008

for lift calculations, but the best agreement with experimental data
is found with the present variant of the en method with the critical
exponent n ≈ 10.

NACA 4412 Airfoil
High-Lift Computations

The flow around a single-element airfoil approaching maximum
lift and poststall conditions is still considered one of the most diffi-
cult computational test cases because of the extreme sensitivity of
boundary-layer separations. For a low-speed test case the NACA
4412 airfoil near the stalling condition is selected. The numeri-
cal modeling of flow regimes close to the maximum lift coeffi-
cient is complicated by factors such as the unsteadiness and three-
dimensionality of the flow, in addition to difficulties related to the
calculating of the boundary-layer transition. In the case of NACA
4412, the computer program testing is carried out by comparing
the computed results with measurements obtained by Hastings and
Williams.37 Experimental data for this airfoil were obtained in the
RAE (4.0 × 2.7 m) low-speed, closed-circuit wind tunnel. The test
model had a chord of 1.0 m and spanned the test section.

Wind-tunnel measurements taken for NACA 4412 at Ma∞ =
0.18, Re = 4.17 × 106, and α = 12.49 deg (corrected) reveal a
boundary-layer separation at approximately x = 0.80c on the up-
per airfoil surface. Oil-flow visualization studies showed that the
flow around the model had a two-dimensional structure up to cl max.
To eliminate laminar separation and to fix the boundary-layer tran-
sition, bands of height 0.28 × 10−3c were placed at x = 0.014c and
x = 0.11c on the upper and lower surfaces, respectively. The exper-
imental report indicates that the transition strips exceed the local
displacement thicknesses. This results in an increase in the momen-
tum thickness, which plays an important role in the boundary-layer
development (Fig. 5). Thus, the correct prediction of starting condi-
tions just behind the transitions is necessary for an accurate solution.

The computations were performed using 200 airfoil and 100 wake
panels. The surface-pressure distribution and the boundary-layer
properties are in good agreement with the measurements (Fig. 5). A
spectacular improvement is obtained in the computed displacement
and momentum thickness by using the strip model (see Table 4). The
computed lift coefficient is in good agreement with the measured
value. The drag coefficient defined from the far wake is underpre-
dicted.

Drag-Polar Computations at Ma∞ = 0.15
Calculations were performed with the free-transition model us-

ing chord Reynolds numbers of Re = 3 × 106 and 9 × 106. A sum-
mary of the calculated and experimental results1 is shown in
Fig. 6.

The flow separation starts from the trailing edge, resulting in
smooth stalling characteristics for the NACA 4412 airfoil. The max-
imum lift coefficient and the stalling angle of attack are well pre-
dicted by the computations. The drag coefficients are calculated with
the modified Squire–Young formula and from the far wake. Both
methods result in nearly identical drag coefficients for attached and

Fig. 5 NACA 4412, Ma∞ = 0.18, Re = 4.17 ×× 106, α= 12.49 deg: pres-
sure coefficient Cp, displacement thickness δ1, and momentum thickness
δ2 compared to experimental data.

Fig. 6 NACA 4412 (free transition, Ma∞ = 0.15, Re = 3.0 ×× 106 calcu-
lated lift (cl), drag (cd) and pitching-moment (cm) coefficients) compared
to experimental data.1

mildly separated flows. In stall and poststall conditions, the far-wake
method is in closer agreement with the experiments.

NACA 0012 Airfoil
This symmetrical 12% thick airfoil is often used in checking

computer programs. It has been tested by Harris38 over a wide
range of Reynolds and Mach numbers using a model with a 0.65-m
chord. The published experimental data are corrected according to
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Fig. 7 NACA 0012 (free transition, Ma∞ = 0.1, and Re = 3.0 ×× 106: cal-
culated lift (cl) and drag (cd) coefficients) compared to experimental
data.1

Fig. 8 Minor modifications are needed in the turbulent region of the
initial target velocity to obtain a closed airfoil.

the guidelines given by Harris. The calculations were carried out
with a 0.003c thick trailing edge using 200 + 100 panels. For com-
parison, Re = 3 × 106 and 6 × 106 with Ma∞ = 0.3 were chosen.
In the test cases, the transition point was fixed at x = 0.05c on both
airfoil surfaces. The same transition location was used in compu-
tations with transition-strip modeling. The height of the strip was
approximated to be 0.2 × 10−3c for Re = 3 × 106 and 0.1 × 10−3c
for Re = 6 × 106. The free transition point was determined by the
boundary-layer equations using the e10 method (see Table 5).

In Fig. 7, the lift coefficient vs drag coefficient and lift coefficient
vs angle of attack with the combined e10 transition and laminar-
separation model are compared with experimental data up to the
stall. The calculated lift and drag coefficients are in good agreement
with the measured values. The stall is predicted about 2 deg too
early.

Design of Airfoils
Test Case

A typical, modern, low-drag target velocity (pressure) distribu-
tion was selected to test the capabilities of the design method. On
both sides of the airfoil, a short acceleration region was followed
by a constant-velocity region (0.1 < x/c < 0.5), which destabilizes
the laminar flow. For checking the accuracy of the method, their
pressure coefficients were set in the design code at Cpu = −1.0 and
Cpl = 0.0, respectively. Transition was induced with short separation
regions. The velocities on the turbulent regions were Wortmann’s
distributions. Some preliminary tests were conducted to define the
trailing-edge velocity for obtaining a closed airfoil (Fig. 8).

The initial geometry was an NACA 4412 airfoil section defined
with the rather coarse grid of 101 coordinate points and 33 x-
coordinates in the wake. The flow conditions were 3.0-deg angle of

Table 6 Airfoil RP-105-066/W under the design
conditions Ma∞ = 0, Re = 2.0 ×× 106, and α= 3.7 deg

Parameter Target Analyzed

cl 0.66 0.657
cd Squire–Young 0.00629 0.00634
cl/cd 105 103
Transition, upper 0.51c 0.51c
Transition, lower 0.57c 0.61c

Fig. 9 Starting airfoil NACA 4412 and the new airfoil RP-105-066/W,
designed from the predefined pressure distribution.

Fig. 10 Convergence of the mean deviation calculated around the foil
using Eq. (47).

Fig. 11 Pressure distribution of the initial section NACA 4412, the
target, and obtained (RP-105-066/W) pressure distribution.

attack, Ma∞ = 0, and Re = 2.0 × 106. Transition was free without
a separation bubble. Between the first three matrix iteration cycles,
the angle of attack was slightly increased to reduce the rotation of the
airfoil around its trailing edge; the final angle of attack was 3.7 deg.
All viscous effects were included. Six matrix inversions were done,
each having 15 to 20 transpiration iterations. A large change was
made from the initial wing-section geometry to obtain the new air-
foil, called RP-105-066/W (Fig. 9). The history of convergence is
presented in Fig. 10.

The new airfoil was analyzed under the design conditions (see
Table 6). Figure 11 includes the specified and the new pressure dis-
tributions, which are practically the same.

Wind-Turbine Application
Using the present method, an airfoil was designed for wind-

turbine applications for Re = 2.0 × 106 with a target thickness of
about t/c = 0.15. At the design point, the lift coefficient should
be cl ≈ 1.2 with a lift-to-drag ratio greater than 120. Further
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requirements include a low pitching-moment coefficient, |cm | <
0.05, to limit the structural loads. In an attempt to develop an air-
foil that meets all of these requirements, a velocity distribution was
generated and fine-tuned. The corresponding geometry was solved
using as a starting point the NACA 4417 airfoil at 8.0-deg angle of
attack with 200 + 70 panels (airfoil and wake). Three intermediate
airfoils were solved until the final airfoil RP-119-WG was obtained
(Fig. 12).

The predicted thickness t/c [Eq. (69)] was 0.17, and the solved
geometry had a value of 0.16. The new airfoil was tested at the

Fig. 12 Convergence history from airfoil NACA 4417 to RP-119-WG.

Fig. 13 Pressure distribution of airfoil RP-119-WG at design condi-
tions Ma∞ = 0.2, Re = 2.0 ×× 106, and α= 8.0 deg, calculated with the
present panel method (analyzed) and the Navier–Stokes method using
Menter’s k-ω SST turbulence model.

Fig. 14 Momentum thickness δ2 and skin-friction coefficients (based
on free-stream velocity) Cf0 of airfoil RP-119-WG are calculated with
the present panel method (integral) and the Navier–Stokes method using
the k-ω turbulence model at design conditions Ma∞ = 0.2, Re = 2 ×× 106,
and α= 8.0 deg.

Table 7 Comparison of designed and analyzed properties of airfoil
RP-119-WG for Ma∞ = 0.2, Re = 2 ×× 106, and α= 8.0 deg

Method cl cd cm Lift to drag Transition (U/L)

Designed 1.2 0.0078 −0.021 150 0.34/0.99c (Michel)
Present analysis 1.17 0.0082 −0.02 144 0.33/0.92c (Michel)

k–ω SST39 1.2 0.0084 −0.02 143 0.33/0.92c (fixed)

design conditions by the present method using Michel’s transition
criterion and by the Navier–Stokes code FINFLO2D using Menter’s
k-ω turbulence model.39

The results are shown in Table 7. The target and analyzed pressure
distributions are nearly identical, as shown in Fig. 13. A comparison
of momentum thickness and skin-friction coefficients is presented
in Fig. 14.

Conclusions
A new viscous-inviscid method for analyzing and designing two-

dimensional single-component airfoils for subsonic speeds has been
introduced and verified by numerical experiments.

The numerical method employs a panel method to represent the
inviscid flow and an integral boundary-layer formulation for the
viscous flow. The equations for the turbulent flow, written both in
direct and in inverse form, describe attached as well as separated
flows. Viscous-inviscid coupling is achieved by transpiration, and
the transition criteria are included in the overall equation system.

The advanced features of the design concept are obtained by us-
ing transpiration to simulate both the viscous effects and to deform
the airfoil geometry at the same time. The semi-inverse residual-
correction airfoil geometry solver determines the new airfoil cor-
responding to a viscous target-velocity distribution by correcting
the initial airfoil iteratively with transpiration. As demonstrated in
the study, the airfoil can even be designed in high-lift conditions
when viscous effects are significant. The design method is fast
also in conventional computers, and only a few matrix iterations
are needed to find the solution. The implementation of the present
inverse method is possible into all existing analysis methods that
utilize transpiration.

High-performance airfoils for sailplanes and windmills are
designed taking into account the practical considerations. The
obtained airfoil was also analyzed by a Navier–Stokes code em-
ploying the latest turbulence models. The examples confirm the
ability of the present method to obtain an inverse solution with lit-
tle or no discrepancy between the specified and obtained pressure
distributions for a variety of cases.

Although the trend in aerodynamic calculation is toward the solu-
tion of the full Navier–Stokes equations, the computation times and
costs of employing Navier–Stokes solvers remain prohibitive for
many routine applications. The author believes that development
of fast and economical methods, such as that demonstrated in the
present study, can provide considerable improvement in efficient
procedures for practical airfoil design.
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